Let’s prepare the datasets we will use in this notebook:
library(tidyverse)
data(mtcars)
data(mpg)
mtcars2 <- mtcars
mtcars2$am <- factor(
mtcars$am, labels = c('automatic', 'manual')
)
Let’s plot a simple graph using ggplot2 package:
ggplot(mtcars2, aes(hp, mpg, color = am)) +
geom_point() + geom_smooth() +
theme(legend.position = 'bottom')
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
Chunk options allow us to control the dimentions of the output plot:
ggplot(mtcars2, aes(hp, mpg, color = am)) +
geom_point() + geom_smooth() +
theme(legend.position = 'bottom')
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
If we want the plot to dynamically change its size, we can specify the width in percentages:
ggplot(mtcars2, aes(hp, mpg, color = am)) +
geom_point() + geom_smooth() +
theme(legend.position = 'bottom')
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
Highchirter package is an R wrapper for a Highcharts javascript library.
library(highcharter)
hchart(mtcars$mpg, name = "MPG", color = "#17b8b6")
Dygraphs gallery and documentation
This library is most useful to display time-series data:
library(dygraphs)
lungDeaths <- cbind(mdeaths, fdeaths)
dygraph(lungDeaths)
This library is easy to use if you are familiar with ggplot2 library:
library(plotly)
g <- ggplot(mpg, aes(class))
p <- g + geom_bar(aes(fill = drv))
ggplotly(p)