Python Optimization

Summer 2025

Research Computing Services
IS&T

BOSTOIN
UNIVERSITY

[o
R S File Help
Un pyd er ") ANACONDA NAVIGATOR
‘ ﬁ Home R X
Applications on base (root) v| Channels Refresh
. ~
| n Environments o o P o
. ®
= Start the Anaconda —~
J . Ju pyter
Learnin
L] _ g N hd ’
N aVI g ato r ‘ CMD.exe Prompt JupyterLab Notebook Powershell Prompt
(L] T
amn Community 0.1.1 126 6.0.3 0.0.1
Run a cd.exe terminal with your current An extensible environment for interactive Web-based, interactive computing notebook Run a Powershell terminal with your current
environment from Navigator activated and reproducible computing, based on the environment. Edit and run human-readable environment from Navigator activated
Jupyter Notebook and Architecture. docs while describing the data analysis.
< b
= Click on Spyder’s
Incr aun
Launch button o o o

Qt Console Spyder anypytools
L] L]
A 4.6 A A 14.2 0.4.1
. e patien It taKes a
p LI PyQt GUI that supports inline figures, profier Scientific PYthon Development
Documentation multiline editing with syntax highlightin| EnviRonment. Powerful Python IDE with

graphical calltips, and more. advanced editing, interactive testing,

Wh I I e to Start debugging and introspection features
n

Developer Blog

BOSTON

UNIVERSITY

Outline

= |ntroduction
= Profiling

= Data Structures
= Generators

= Accelerators

= Syntax

BOSTON
UNIVERSITY

Optimization
= What are you optimizing? = How do you decide when
optimization is necessary?
= Run time
= Memory usage = What should be changed in a
= 1/O (storage read/write) program during optimization?

= Code structure

= Algorithm selection = s Python fast?

BOSTON
UNIVERSITY

Why Bother to Optimize?

42 Years of Microprocessor Trend Data

= Computers aren't getting 107 T R
much faster. 108 ? ? ’ (thousands)
10° Single-Thread
PSerforlrluiell_ncei-03
= Easier access to data 10* { (SpeciNT X107
’ Frequency (MHz)
means there’s more 10°
. . Typical Power
computation possible than 1¢? { (Watts)
I Numb f
In the past. 10" - Logical Cores
10° —‘: rrrrrrrrr 1. rrrrrrrr 30&0“0«“%::“—
. Better COde means yOU Can 1970 1980 1990 2000 2010 2020

get more done! Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

BOSTON https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
UNIVERSITY

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

-
Some words of wisdom, lightly paraphrased

The Elements of Programming Style, by Brian W. Kernighan and P. J. Plauger, 1974.

= Before you make your code faster:
= Make it right
= Make it clear

= Keep it right when you make It faster.

= Fundamental improvements in performance are most often
made by algorithm changes, not by tuning.

BOSTON
UNIVERSITY

https://en.wikipedia.org/wiki/The_Elements_of_Programming_Style

N
Outline

= |ntroduction
= Profiling

= Data Structures
= Generators

= Accelerators

= Syntax

BOSTON
UNIVERSITY

Profiling
= Before making code changes = Ways to profile:
you must profile the code. = |nsert timing statements into
your code

= Laborious but useful.
= We are really bad at

guessing how different parts

of programs perform! = Use profiling tools that can

measure.
= This is independent of your = Function call times
degree of programming = Line-by-line execution times
experience. = Memory consumption

= CPU hardware utilization
UNIVERSITY

Profiling Drawbacks

= Your program can take much = A small test problem might
longer to run when it is being be too small to reveal
profiled. performance problems.

= |t may consume more
memory.

BOSTON
UNIVERSITY

.
Python Profiling Tools

= The Python Standard Library = Sypder & Jupyter have

Includes two profilers: special timing commands:
= cProfile (default) = O%time — time a line of code
= profile = Otimeit — benchmark a line of
code
» Documentation is online. " Jupyter:

= 9%%time and %%timeit at the
top of a cell times the whole
cell.

BOSTON
UNIVERSITY

https://docs.python.org/3.6/library/profile.html

Additional Profiling Tools

= We'll use two other profilers today:

* |ine_profiler = memory profiler
= Line-by-line timing statistics for = Line-by-line memory usage
selected functions. statistics for selected functions.

= For all python3 modules.

We’ll pause here to make sure everyone has this installed in their Anaconda setups.
If you’re using the SCC and the python3/3.12.4 module they’re already installed.

BOSTON
UNIVERSITY

https://github.com/rkern/line_profiler
https://pypi.org/project/memory-profiler/

N
A simple sample code

= Open row_vs_col _orig.py = 3 implementations:

= Calculate the new matrix values by
multiplying the constant against

= This does a simple whole rows at a time
calculation where a Numpy = ...by multiplying against whole
.. : columns at a time
matrix (i.e. a 2D table) Is . o
oo = ...using Numpy’s built-in element-by-
multiplied by a constant element multiplication syntax.
value.

BOSTON
UNIVERSITY

Profiling: manual timing

= Use the Python time library:
https://docs.python.org/3/library/time.html

= Next, open row_vs_col_timing.py = TwO ways:

= time.perf_counter():

= Returns a floating point value
representing a time.

= time.time():

= Floating point value of seconds
since Jan. 1, 1970, 00:00:00

= This does manual timing of the
function calls.

= Which version is the fastest?

= Change the size of the matrix — does
this change your result?

import time

st = time.perf counter ()

BOSTON # do something...
UNIVERSITY .
et = time.perf counter()

print(f'Elapsed (sec): {et-st:.3f}")

https://docs.python.org/3/library/time.html

decorator

Function Decorators

4 do something... h
my_func(args)
= These are wrappers around
. _ domore... Y,
functions.

= Written as Python functions.

= You can intercept a function
call and do whatever you like
before calling the wrapped
function.

= After the function you can
again do whatever you like
before returning values. # call the function:

ny_tone (1,2,)
UNIVERSITY —

Add a decorator to a
function

def my func(x,y,z):

Better Manual Profiling

= Open row_vs col decorator.py = How it works:
" This implements a function = Intercept a call to a function
decorator to automatically time and start a timer.

function calls. .
= Call the function.

= |ntercept the function return,
stop the timer.

= Print out the elapsed time.

= Return the function’s return
value.

BOSTON
UNIVERSITY

In [3]: %time some func(1,06.4,5.1)

Spyder T|m|ng Wall time: 2.18 s

In [4]: %time some func(l,0.4,8.1)

wali fime: 515 ms

’3 ms * 6.85 ms per loop (mean

: &timeit some_func(2,6.1,8.

= |n the Python console use:

= $time ..python code..
= Prints time to run the code
= $timelt ..python code..

= Runs the code multiple times, reports timing
statistics

BOSTON
UNIVERSITY

ev. of 7 runs, 1 loop each)

Spyder Timing

import time

def some_func(x,y,z):
time.sleep((x+y+z)/3)

= |n source code you can label @

a cell with #%%

= Then put $%time or
$$timeit atthe top of the

cell.

= These are NOT PYTHON o
commands — don't leave -
them in your code.

BOSTON
UNIVERSITY

Console output

: : C? Run cell and advance Shift+Return
some_func(1.5,08.1,2)
C? Re-run last cell Alt+Return
oo I, Run selection or current line F9

Go to definition Ctrl+G
Ctrl+Z

Ctrl+Shift+Z

Crl+C
Ctrl+V

Ctrl+A

Ctrl+0
Ctrl+1
Ctrl+Alt+D

Ctrl+Alt+]

In [1@]: runcell{l, °
Presentatio

VI
Wall time: 1.21 s

In [11]:

Profiling: Using the Python Profiler

Return to row_vs_col_orig.py & Spyder (Python 3.7)

File Edit Search Source m Debug Consoles Projects Tools View Help

. O = | > B " b E B

Spyder can run the Python profiler for B Run cell Ctrl+Return

Editor - C:\Users\bgregor\Dropbe resentations\Opt
yOU. o E¥ Run cell and advance Shift+Return

=) row_vs_col_tming.py X Re-run last cell Alt+Return corator.py X

1 B} Run selection or current line Fa

I ar

Choose the menu option Run—->Profile 2" @ Re-run last script .
M # Configuration per file... Ctrl+Fa
@ Profile F10

4
5

6 An example for use with basic timing and profiling
7

8

9 @author: bgregor

10

BOSTON
UNIVERSITY

Spyder Profiling Output

Profiler = 3
Th\Users\bgregor\Dropbox (BOSTON UNIVERSITY)\Research Computing’, Tutorials\ Tutorial Presentations\Optimizing Python\row_vs_col_orig.py | & P Profie Stop
e RE 02 Jan 2020 09:15 Output Save data & Load data Clear comparison
Function/Module Total Time ~ Diff Local Time Diff Calls Diff File:line
[_find_and_load 217.24 ms 1.88 ms 165 <frozen importlib._bootstrap> ..
col_by_col 174.22 ms 174.22 ms 1 C:/Users/bgregor/Dropbox (BO...
[ones 45,83 ms 12.30 us 2 Chanaconda3_2018.2\lib\site-pa...
built_in 36.13 ms 38.15 ms 1 C:/Users/bgregor/Dropbox (BO...
row_by_row 21.03 ms 21.03 ms 1 C:/Users/bgregor/Dropbox (BO... | -

= The Profiler tab shows total time spent in each function.

= |f functions call functions those calls can be shown as well — click
the triangles to expand the results.

BOSTON
UNIVERSITY

Timing and Profiling in a Jupyter Notebook

Simple timing can be done with the same
commands.
= Ootime, %timeit — apply to a single line of code

= 9%%time, %%timeit — apply to a cell. Place
these at the top of the cell.

$prun runs the Python profiler for a
function call.

Tosee helpadda ?: $time?

BOSTON
UNIVERSITY

In [6]:

In [11]:

In [8]:

In [12]:

In [13]:

4 fu

Ordered by

import numpy as np
mat_size = 560
Let's just multiply by 2.
scaling_value = 2.@
def row_by_row(A,mat):
' compute mat = A*mat row-by-row "'’
rows = mat.shape[@]
for i in range(rows):
mat[i,:] = A * mat[i,:]
return mat

mat = np.ones([mat_size,mat_size])

%time mat = row_by_row(scaling_value, mat)

Wall time: 5.98 ms

%timeit row_by_row(scaling_value, mat)

2.29 ms * 349 us per loop (mean t std. dev. of 7 runs, 1@ loops each)

%prun row_by_row(scaling_value, mat)

nction calls in @.883 seconds

: internal time

ncalls tottime percall cumtime percall filename:lineno(function)

1

1
1
1

0.003 0.003 ©.003
0.000 0.000 ©.003
0.000 6.000 ©8.003
0.000 8.000 ©.000

©.003 <ipython-input-6-652953e76d87>:7(row_by_row)
©.003 {built-in method builtins.exec}

©.803 <string>:1(<module>)

©.000 {method 'disable' of '_lsprof.Profiler' objects}

Command Line Python Profiling

= Command line profiling = Syntax:
results are printed to the python -m cProfile run.py
screen or can be saved to a
file. = Sort by statistics:

python -m cProfile —-s time run.py

= This can be done inside of a |
batch job on the SCC... = Best use — save to a file and use a

utility to study the output:

python -m cProfile -o prof.out run.py

BOSTON
UNIVERSITY

https://docs.python.org/3.6/library/profile.html#the-stats-class

python -m cProfile -o prof.out run.py

Python Profiling Tools
= The SCC has 2 profiling visualization tools for Python

= kcachegrind = snakeviz
= Run using the Centos7 environment: = Runs in a browser
= scc-centos’/ kcachegrind
_ _ = To use:
= Convert prof.out to the required file
format open kcachegrind:
pyprof2calltree is part of the # lst load your python3 module
python3/3.12.4 module. # one-time install
pyprof2calltree -1 prof.out -o prof.log pip install --user snakeviz
scc-centos7 kcachegrind prof.log ~/.local/bin/snakeviz prof.out

BOSTON
UNIVERSITY

http://kcachegrind.sourceforge.net/html/Documentation.html
https://jiffyclub.github.io/snakeviz/

N
kcachegrind

[+ prof.log e o Bl S
File View Go Settings Help
Q Open «f Back ~ Ep Forward = & Up ~ | 9% Relative 9) cycle Detection Q-I-D Relative to Parent < Shorten Templates |Nanoseconds -
Top Cost Call stack ® col by col
ns calls Function Types | Callers | all callers | Callee Map | Source Code
5.12 185 W find_and_load_unlocked =cycle 6> vent T indl celf short :
ven e Incl e o ormula
5.11 177 d _load_unlocked <cycle 6> | o
5.11 139 M exec_module:722 <cycle 6> Manoseconds [, 63.19 [, 63.19 ns

5.10 139 & _call_with_frames_removed <cycle 6>
5.10 139 M <built-in method builtins.exec> <cycle 6=

Flat Profile 3]
search: || (No Grouping) «
Incl. Self Called Function Location
m 100.01 2.53 2 W =<cycle 6> {unknown)
mw 94.90 2.11 1 ® =module> =cycle 6> row_wvs_col_orig.py
[~ 6319 63.19 17 col_by col row_vs_col_orig.py
| 14.70 | 14.70 1 o built_in row_vs_col_orig.py
! 10.34 0.00 2 [ones numeric.py
' 10.34 1 10.34 3 W <built-in method numpy.... ~
' 10.34 0.00 2 W copyto =__array_function__ internals= profile Part - celf callec Comment
4.56 4.56 1 W row_by_row row_wvs_col_orig.py
1.35 0.01 139 W exec_module:722 <cycle... <frozen importlib._bootstrap_external>
1.34 0.04 139 M get_code <frozen importlib._bootstrap_external>
1.08 0.02 185 B _find_and_load_unlocked... <frozen importlib._bootstrap>
1.06 0.03 182 ® _find_spec =frozen importlib._bootstrap>
1.01 0.00 177 W find_spec:1272 =frozen importlib._bootstrap_external=
1.00 0.02 177 W _get_spec:1240 =frozen importlib._bootstrap_external=
0.94 0.08 402 ml find_spec:1356 <frozen importlib._bootstrap_external=
0.80 0.03 317 W decorator:154 <cycle 6> overrides.py
0.75 0.68 139 o get data <frozen importlib._bootstrap_external=
0.73 0.01 777 W _path_stat =frozen importlib._bootstrap_external=
0.72 0.72 777 =l <built-in method posix.s... ~
0.58 0.01 236 W _path_is_mode_type =frozen importlib._bootstrap_external=
0.58 0.00 220 Bl _path_isfile <frozen importlib._bootstrap_external=
0.56 0.00 260 m _call_with_frames_remo... <frozen importlib._bootstrap>
BOS 0.55 0.48 33 @l <built-in method _imp.cr... ~ Parts | Callees | Call Graph | All Callees | Caller Map | Machine Code

[
UNIVE prof.log [1] - Total Nanoseconds Cost: 3 995 561 895

snakeviz

= Can be embedded into a
Jupyter notebook:

In a Jupyter notebook:

$load ext snakeviz

$snakeviz python code to time...

<frozen importlib._bootstrap>:2234(_find_and_load)
0.00420 s

<frozen importlib._bootstrap>:2207(_find_and_load_unlocked)
0.00416 s

<frozen importlib._bootstrap>:1465(exec_module)
0.00355 s

BOSTON
UNIVERSITY

Line-by-Line Profiling

= We've installed the
line_profiler library.

= To use with kernprof, a

command line tool: def row by row(A,mat):

= Decorate functions with
@profile

= Do this for each function in
row_vs_col _orig.py

from line profiler import profile

BOSTON
UNIVERSITY

Run kernprof

kernprof -1 -o line.lprof row vs col orig.py
python -m line profiler line.lprof

Timer unit: le-06 s

Total time: 0.204861 s
File: row vs col orig.py
Function: row by row at line 32

Line # Hits Time Per Hit % Time Line Contents
32 dprofile
33 def row by row(A,x):
34 ''"' compute x = A*x row-by-row '''
35 1 5.0 5.0 0.0 rows = x.shape[0]
36 10001 5605.0 0.6 2.7 for i in range (rows) :
37 10000 199251.0 19.9 97.3 x[i,:] = x[1i,:] * A
38 1 0.0 0.0 0.0 return x

line_profiler from within
Spyder

= Manually add the profiling to your script;

run as usual.

= QOlder versions of Spyder (version 4) had
a plug-in that loaded line_profiler results
Into the Spyder GUI. This does not exist
for Spyder v5.

BOSTON
UNIVERSITY

v

import line profiler
profile = line profiler.LineProfiler ()

function definitions here...

Select the functions
profile.add function(func a)
profile.add function(func b)
profile.enable()

run the rest of your program
as usual...

Turn off profiling, print the results.
profile.disable()

Print the results
profile.print stats()

line_profiler from within S
Jupyter W|th %Iprun .python code..

def looping(N,a,b,c):
for i in range(N):
my func(a,b,c)

= Option 1: Manually add to your
script as in the previous slide. %load_ext line profiler

=z

= 100
= b =c¢c=1.0

)

= Option 2: Load the line-by-line
profiler in your notebook and

profile my func as it gets
profile functions. # called by looping(). The
= 21lprun is the line-by-line profiler # @profile decorator 1is not
needed.

$lprun —-f my func looping(N,a,b,c)

BOSTON # line profiler output prints...
UNIVERSITY

Memory Usage Profiling

= The memory_profiler library def row by row(h,mat) :
IS used in a similar fashion.

= To use: = Run the script with the
= Decorate functions with memory_profiler library.
@profile = The output is printed to the
screen.

python -m memory profiler row vs col orig.py

BOSTON
UNIVERSITY

import memory profiler as mp

More ways to run..

| |
time.sleep ((x+y+z)/3)
Run as usual

In [17]: %load_ext memory_profiler

= |Import the library and
decorate functions

%memit row_by_row(scaling_value,mat)

= Jupyter
F))/ . ///////////////' peak memory: 58.16 MiB, increment: .07 MiB
= Load the memory profiler

= Separate notebook files can be profiled
with %emprun

= See this web page for details.

= Use $memit to getthe peak
memory used by a function
call.

BOSTON
UNIVERSITY

https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html

= Set mat_size = 10000. Output of: python -m memory profiler row vs col orig.py

Filename: row vs col orig.py

Line # Mem usage Increment Line Contents

40 808.535 MiB 808.535 MiB @profile

41 def col by col(A,mat) :

42 """ compute mat = A*mat col by col "'’
43 808.535 MiB 0.000 MiB cols = mat.shapel[l]

44 808.535 MiB 0.000 MiB for 1 in range(cols):

45 808.535 MiB 0.000 MiB mat[:,1] = A * mat[:,1]

40 808.535 MiB 0.000 MiB return x

Whoal!

Line # Mem usage Increment Line Contents

48 808.535 MiB 808.535 MiB dprofile
49 def built in(A,mat):
50 '''" A*mat using built-in element-by-element'''

IE 51 1571.477 MiB 762.941 MiB return A * mat

2X memory usage...?

= This function is calculating the

)

numpy array to hold the result

correct quantity.

= The syntax creates a new

which Is returned.

= This is an in-place calculation:

BOSTON
UNIVERSITY

def

mat

built in(A,mat):
return A * mat

= bullt iIn(scaling value, mat)

def

row by row(A,mat):

rows = mat.shapel[0]

for 1 in range(rows):
mat[i,:] = A * mat[1i, :]

return x

def built in(A,mat):

. . mat[:] = A * mat
Fix and re-profile the results. return mat
Line # Mem usage Increment Line Contents
= Memory usage Is 46 808.543 MiB 808.543 MiB Q@profile
down: 47 def built in (A, mat) :
\ 48 808.543 MiB 0.000 MiB mat[:] = A * mat
49 808.543 MiB 0.000 MiB return mat

= Using the profiling in Spyder:

row_by row 183.57
col_by col 2870.05

built_in (original version) 576.27 } Interesting! More

BOSTON e i g . memory usage is
built_in (in-place version) 764 .87 taster y usad

Other Profiling Tools

= So far we've used: = Here are three more to
= Python’s built-in profiler consider:
= |line_profiler
= memory_profiler = Intel Vtune Profiler
= |ntel Advisor
= Scalene

BOSTON
UNIVERSITY

ntel Vtune Amplifier

Project Navigator

~ I marathon
r000ps
1001ps
r002hs
r003hs

A comprehensive tool from Intel that can s

r006ps

analyze Python scripts and the libraries

they call for:

= Function call times

= “hotspots” — lines of code that consume

excess time
= Memory allocations

= CPU and memory utilitization

Check out their tutorials and
documentation.

Available in the intel/2024.0 module
module load intel/2024.0

vtune-guili &

BOSTON

UNIVERSITY

= Also see the Intel Advisor:

= + D & O

Welcome r004hs

[Hotspots Hotspots by CPU Utilization + @ 1

Analysis Configurati Coll Log ¥y Bottom-
Grouping:| Function / Call Stack
Function / Call Stack CPU Time ¥ Module

list_contains

« compare_finishers
_PyMethodDescr_Fastq
drop_gil
get_name
_PyObject_GetMethod
OS_BARESYSCALL_D{
_PyObject_FastCallKey
disym
listiter_next
_PyObject_GenericGet4
list_dealloc
_PyFunction_FastCallK(
PyDict_Getitem
gc_list_size
_Py_CheckFunctionRes

O: %+

python (TID: 7695)

Thread

CPU Utilization

FILTER 100.0% %

10.270s python3.7

10.270s marathon_list.py
python3.7
python3.7
marathon_list.py
python3.7
libc-dynamic.so
python3.7
libdl.so.2
python3.7
python3.7
python3.7
python3.7
python3.7
python3.7
python3.7

0s
L

FYRTT RN

roosme r006ps r007hs

NTEL VTUNE PROFILER

up Caller/Callee Top-down Tree Platform marathon_list.py »

Function (Full)
list_contains
compare_finishers(names1, names2)
_PyMethodDescr_FastCallKeywords
drop_gil
get_name(line)
_PyObject_GetMethod
OS_BARESYSCALL_DoCallAsmintel64L
_PyObject_FastCallKeywords
disym
listiter_next
_PyObject_GenericGetAttrWithDict
list_dealloc
_PyFunction_FastCallKeywords
PyDict_Getitem
gc_list_size
_Py_CheckFunctionResult

CPU Time v
Viewing 1lofl selected stack(s)

100.0% (10.270s of 10.270s)
python3.7! - listobject.c
marathon_list.py! +0x11 - marathon
python3.7! +0xd8cd9
marathon_list.py! +0x2f - marathon_list.py:47
python3.7! +0xbfc97 - ¢
python3.7! +0xc07af - ceval.c:3960
python3.7! +0xc07df - ceval.c:524
python3.7! +0x158bce - pythonrun.c:1035
python3.7! +0x15977f - pythonrun
python3.7! +0x159939 - py
python3.7} +0x1593c1 - main.c:462
python3.7! +0x254 - main.c:1655
python3.7! - main.c:2916
python3.7!, - main.c:717
python3.7! +0x1592b5 - main.c:3491
libc.s0.6! +0xf4 - [unknown source file]
python3.7! 1+0x28 - start.S:103

']. Thread v
[l Running
CPU Time
@ Spin and Overhead
® CPU Sample
CPU Utilization
CPU Time
@ Spin and Overhead

Any Proces v | | Any Thread

v | | Any Module v | | Any Utiliz: v

advisor-guil &

| User functions + v

Functions onl v Show inline fu v

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/introduction/tutorials-and-samples.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html#gs.16u03w

/™.
/’QSCALENS%\

Scalene

hover over bars to see breakdowns; click on coLumn HeaDers to sort.

./test/testme. py: % of time = 99.9% out of 12.7s.

TIME MEMORY MEMORY MEMORY MEMORY LINE PROFILE

= A new profiling tool from UMass === =T i on’i) ete..,

port numpy as np

4 from numpy import linalg as LA

Am h e rSt -] 10% 12 x = [i*i for i in range(@,100000)][99999
u [H I I o 25% 13 1 = [i*i for i in range(@,200000)][199999
[=Ty 63% 14 21 = [i for i in range(©, 300000 299999

= Easy to install (for Linux, ; e
Windows, and Mac): 5

= pip install scalene

= Performs CPU, GPU, and = The report is in HTML format and is displayed
memory profiling. in a web browser.

= This can be called from within Jupyter
notebooks as well as from a command line.

BOSTON
UNIVERSITY

https://github.com/plasma-umass/scalene
https://github.com/plasma-umass/scalene
https://github.com/plasma-umass/scalene

Profiling process

= Start with function-level = Line profiler is slower than
profiling: function timing so use where
needed.

= Spyder profiling
= cProfile with kcachegrind or
snakeviz

= |dentify problem functions.

= Use memory profiling when it
Seems necessary.
= Excess memory usage
= Performance issues not easily solved

= LEARN THE TOOLS. with other methods.
= Read the docs!

BOSTON
UNIVERSITY

.
Algorithm example

= Sometimes we have code = Let's look at an example and
that is written poorly. see If you can identify areas
of poor performance:

= Profiling tells us where the
problems are but we still bixi_slow.py
need to find solutions.

BOSTON
UNIVERSITY

N
Outline

= |ntroduction

= Profiling

= Data Structures
= Generators

= Accelerators

= Syntax

BOSTON
UNIVERSITY

Data Structures

= Algorithm implementation and = Python data structures:
performance is highly dependent = List
on underlying data structures. = Dictionary
= Aka “associative array”
0o : : = Sets
= Wikipedia has a long list of
= Tuples

established data structures.

= These are sufficient to underpin a

= Find Python implementations at vast variety of algorithms.

https.//pypi.org

= For manipulating numeric data

use Numpy ndarrays or Pandas
e Dataframes.

https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://pypi.org/project/memory-profiler/

Python data structures are fast when used for:

= Lists: = Dictionaries:
= Appending = Element getting/setting
= Element getting/setting = Element membership
= Removing from the end “pop()” = Element insertion
= Get length = Sets:

= Tuples (fixed lists): = Element membership
= Element getting = Set operations (unions,
= Get length Intersections, etc)

BOSTON
UNIVERSITY

N
Let's compare...

= Sample data: names of finishers = Two implementations:
of the 2015 and 2017 Boston

Marathons _
= marathon_list.py loads the data

Into a pair of lists and then

= Open files marathon_list.py and loops through them.

marathon_set.py

= marathon_set.py loads the
data into a pair of sets and
Intersects them.

= Question: Who finished both the
2015 and 2017 marathons?

BOSTON
UNIVERSITY

Data source: https://www.kaggle.com/rojour/boston-results/data

https://www.kaggle.com/rojour/boston-results/data

o
Performance

= Test each script using the = What did you find?
Spyder profiler.

= Which one is faster?
= Run it more than once —
sometimes library or other
code loading gives false
timing.

= Are the results the same?

BOSTON
UNIVERSITY

Lists

= The list lookup is ~6300x slower than
the set intersection!

A 4

= Algorithm: For each element in list A
check to see if it's in list B.

= On average you need len (B) /2 -
comparisons for every element in A.

= That's approx. len (A) * len(B) /2
operations. Each comparison is pretty
fast.

= For 26000 runners that's ~350M string
comparisons.

BOSTON
UNIVERSITY

Sets

Sets use a special data structure called a hash
table to store elements.

= Also used for dictionary keys.
= The underlying hash function is very fast.
= Lookup speed is nearly constant regardless of the

size of the set.

Algorithm: For each element in set A
check to see if it's in set B.

= You need len(A) lookups into B. Each
lookup in B takes a constant time r.

= That's len(A) operations of time 1.

= For 26000 runners there are 26000 hash
comparisons.

How do you choose?

Test your code on different problem sizes.

Profile your code if testing reveals problems.

Read the documentation for available tools and libraries.
Email RCS for help.

BOSTON
UNIVERSITY

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table

Understand your data
= Why were the results different?

= Sets only store unique values so
some names got dropped.

= A better set solution would use a
combination of factors to be more
robust.

= Example store this in the set as a tuple:
(name, city, country, gender)

BOSTON
UNIVERSITY

Graphs

= Some data Is naturally

understood as a graph.

= A graph of people and their social
connections to other people.

= Contact tracing during a pandemic.
= Journal articles and their authors.

= Python libraries: networkx,
igraph, graph-tool

BOSTON
UNIVERSITY

Networkx is pure Python — it
builds its graphs on a “dictionary
of dictionaries of dictionaries”

igraph is in C and C++.
graph-tool is in C++.

https://networkx.org/documentation/latest/
https://igraph.org/
https://graph-tool.skewed.de/static/doc/index.html

Numpy and Pandas

= Numpy ndarrays are
iIntended for high speed
numeric calculations.

= Pandas dataframes are
composed of ndarrays —
similar pros & cons

BOSTON
UNIVERSITY

Optimal usage:

Use built-in numpy functions
wherever possible
= If x is an ndarray...
= numpy.abs (x) can operate on a
whole ndarray.
" math.abs (x) requires a Python
loop

Choose appropriate data types:
float32, int, etc.

Pre-allocate ndarrays to the correct
size.

Overwrite values with left-hand slice
notation.

I
Pandas

= Read the Pandas docs that = Want to use multiple cores?

give performance tips. = Have really big data sets to
process?
= Also — docs on scaling = Or both?
Pandas to large data sets. = Check out Dask and its

DataFrame implementation.

BOSTON
UNIVERSITY

https://pandas.pydata.org/docs/user_guide/enhancingperf.html
https://pandas.pydata.org/docs/user_guide/scale.html
https://pandas.pydata.org/docs/user_guide/scale.html
https://www.dask.org/

Avoid numpy.append()!

x=numpy.ones(4) x— |1 (1|1]1

= This also applies to
pandas.Dataframe.append ()

new ———

Xx=numpy.append(x,2)

111111
* numpy.append () for an ndarray
with N elements: copy: |
= Allocate a new ndarray of size N+1 11111
= Copy over the existing data
= Copy in the new element. copy—>| 11112

= Deallocate the old ndarray of N elements.

| —>
BOSTON delete 1 1 1 1
UNIVERSITY

-
Some Numpy examples

= Open numpy_solutions.py

= Examples are provided for append(), pre-allocation, and
proper use of library calls.

BOSTON
UNIVERSITY

N
Outline

= |ntroduction

= Profiling

= Data Structures
= Generators
= Accelerators
= Syntax

BOSTON
UNIVERSITY

Generators

= A Python generator is a function that behaves like an iterator.

= An iterator returns every element of a collection.
= Example: a for loop iterates over the elements of a Python list.

= Generators can be used to create sequences of values one value at a
time.

BOSTON
UNIVERSITY

for x in range(1,4):

rfir]EJEB() print (x)
Output:

= The range() function in Python is a generator. ﬁ ;
= 3

= Try: print (range(4))
= |t won't print out any numbers — the output is not a list.
= range() returns a generator that can be iterated over to produce a sequence of integers.

BOSTON
UNIVERSITY

List comprehensions as generators

= List comprehensions are handy ways to trs = [leallt imettiohmacii
create and manipulate lists. # uppercase all the strings

/////////, caps = [L.upper() for L in strs]

= |ntermediate lists or ones that are & Print them out
created and discarded still need to for c in caps:
print (caps)

allocate memory.

______» gcaps = (L.upper() for L in strs)

= Generator syntax: use () instead of [] for g in gcaps:
= No lists are created...little additional print(g)
memory.

BOSTON : : : :
Let’s visualize this!

https://pythontutor.com/render.html#code=strs%20%3D%20%5B'call','me','ishmael'%5D%0A%0A%23%20uppercase%20all%20the%20strings%0Acaps%20%3D%20%5BL.upper%28%29%20for%20L%20in%20strs%5D%0A%0A%23%20Print%20them%20out%0Afor%20c%20in%20caps%3A%0A%20%20%20%20print%28c%29%0A%20%20%20%20%0A%0Agcaps%20%3D%20%28L.upper%28%29%20for%20L%20in%20strs%29%0Afor%20g%20in%20gcaps%3A%0A%20%20%20%20print%28g%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false

o
Generator Functions

import random

" : - . def tripl N) :
= A generator function is written with ef triple ran(N)

the yield keyword.
for 1 in range (N):
vals=(random.random(),

= |t will generate values until it reaches random. random() ,
a return Statement or throws a . rendom.random())
. i yield vals
StopIlteration exception. return # optional
. for triplet in triple ran(4):
= Every yield will return a value but print ('21.3f 21.3f 21.3f' % triplet)
the function keeps running until it
0.070 0.363 0.821
returns. # 0.668 0.705 0.235
0.384 0.817 0.071
0.0633 0.303 0.591

BOSTON
Visualize!

https://pythontutor.com/render.html#code=import%20random%0A%23%20best%20practice%20is%20to%20use%20numpy.random.default_rng%28%29%0A%23%20but%20this%20website%20doesn't%20support%20numpy.%0A%0Adef%20triple_ran%28N%29%3A%0A%20%20%20%20'''%20Return%20N%20tuples%20of%203%0A%20%20%20%20%20%20%20%20random%20numbers.'''%0A%20%20%20%20for%20i%20in%20range%28N%29%3A%0A%20%20%20%20%20%20%20%20vals%3D%28random.random%28%29,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20random.random%28%29,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20random.random%28%29%29%0A%20%20%20%20%20%20%20%20yield%20vals%20%0A%20%20%20%20return%20%23%20optional%20%0A%0Afor%20triplet%20in%20triple_ran%284%29%3A%0A%20%20%20%20print%28'%251.3f%20%251.3f%20%251.3f'%20%25%20%20triplet%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false

N
Outline

= |ntroduction

= Profiling

= Data Structures
= Generators
= Accelerators
= Syntax

BOSTON
UNIVERSITY

& Numba

= The numba library can translate portions of your Python code and compile

It iInto machine code on demand.
= Achieves a significant speedup compared with regular Python.

= Compatible with numpy ndarrays and a growing number of Python
datatypes.

= Can generate code to execute automatically on GPUs.

BOSTON
UNIVERSITY

http://numba.pydata.org/

numba from numba import njit

= The @nijit decorator is used to # This will get compiled when it’s

indicate which functions are # FIRST EXECUTED. The result will be
cached for re-use.

compiled.
= Options: def average(x, vy, z):
= GPU code generation return (x + v + z) / 3.0

= Parallelization

= Caching of compiled code
With type information this one gets

= C d f d # compiled when the file is READ.
an produce faster array code (floated (floated,floatod,floatod))

than pure NumPy statements. def average eager(x, y, z):

return (x + v + z) / 3.0
BOSTON
UNIVERSITY

_ import numpy as np _

import numba

. (cache=True, fastmath=True, parallel=True)
def modify weights (w):

\ is the Python "line continuation"
return -np.log(np.exp(-11.13 + 0.366 * w) / \
(1 + np.exp(-11.13 + 0.366 * w)))

...later in the code process a column in a

Pandas dataframe and replace it with the

modified value.

numba.set num threads () was called earlier

to enable parallel computation.

df['weight'] = modify weights(df['weight'].to numpy(dtype=np.float32))

= A snippet of code from a program processing ~5B rows of data.

= The data was processed via chunks of 100M rows into Pandas
dataframes.

= Profiling showed that this weight calculation was a bottleneck. Sped
up with numba and 4 threads.

B

A numba example

Open mandelbrot.py

BOSTON
UNIVERSITY

numexpr

import numpy as np

. _ import numexpr as ne
= Another acceleration library for

Python. a = np.arange (10)
= This one seems to be waning in popularity b = np.arange (0, 20, 2)
Plain NumPy

= Useful for speeding up specific
ndarray expressions.
= Typically 2-4x faster than plain NumPy

=2 *a+ 3 *bD

Q

Numexpr
= ne.evaluate("2*a+3*b")

Q. ==

= Code needs to be edited to move
ndarray expressions into the

-‘ﬁ:éﬁr.evaluate()fUﬂCﬂOn:
‘ BOSTON |
UNIVERSITY

https://github.com/pydata/numexpr

f2py @ python
= Fortran code can be lightly modified and re-compiled f (O r) tr[a n]

Into Python compatible functions.

= High performance routines are relatively easy to code in
Fortran 95/2003.

= f2py is part of the numpy library.

= Compiled Fortran code can be >100x faster than
equivalent Python code.

BOSTON
UNIVERSITY

https://numpy.org/doc/stable/f2py/

Rapids.al

= “GPU Accelerated Data Science”
= Provides a number of libraries that execute on the GPU

= These are RAPIDS Workflows

= Pandas - cudf
= scipy, numpy > cupy RAPIDS Accelerated

= Dask = dask-cuda
= And lots more

_ _ NVIDIA CUDA
= Easiest install on the SCC:
NVIDIA Hardware

= Use acondaenv

BOSTON
UNIVERSITY

https://rapids.ai/
https://github.com/rapidsai
https://docs.rapids.ai/install?_gl=1*jynlww*_ga*NzUwMDUzMjMxLjE3MTg3MjUxMjI.*_ga_RKXFW6CM42*MTcxODcyNTEyMS4xLjEuMTcxODcyNTM1OC40MS4wLjA.#selector

Intel Distribution for Python

= Intel has a customized distribution of Python for Linux and Windows.
= Quote:

« Scalable performance using all available CPU cores on laptops, desktops, and powerful
servers

« Support for the latest CPU instructions

* Near-native performance through acceleration of core numerical and machine learning
packages with libraries like the Intel® oneAPI Math Kernel Library (oneMKL) and Intel®
oneAPI Data Analytics Library

* Productivity tools for compiling Python code into optimized instructions

« Essential Python bindings for easing integration of Intel native tools with your Python project

= Here’s an example of using the Data Parallel Extension for Numpy for auto-parallelizing
Numpy code.

BOSTON
UNIVERSITY

https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-for-python.html#gs.mdbqvz
https://intelpython.github.io/dpnp/quick_start_guide.html#examples

ELPy How fast is PyPy3.10?

= PyPy is an alternate
Implementation of the Python | | 1 L
Interpreter.

= [t is mostly compatible with | |
Python libraries oo0 LILLARN o LR RRRRRRRRRE, MBI 1L o

Lo . T S eSS NS P N F SR SRS ES NS5 EOE 9B
Pl ELCOFILT SRS I 68/ F 1585585558559 5F & ol
= Popular libraries (num andas) will T/ SSSFIIET 9505585385855 8x'S55E8FF78559%855
! ~_§£_J’ o0 S QJQQfQE:_-C‘Qra\fdgggk@:@w{,?u@&’,\@wgzé\ S,"*};}-._‘é’
153 o0 ke T < W < = X S-S5 L& &S O O = /£ L L]
< 5 4 o & co.s Y COE£ S > S / N
work 5§78 gy I3F SIE5EEF JISTERG FESS
& S (e AN 7?85 Saa £8 RS
3£ S g T 4 SSE oX 55
. KL < S :}_Cf coq'-g"{f %) =
= For Python code PyPy is ~3x B
o —
S ISy
G G @

faster than regular Python.

= |f you have a program where most of the work occurs in
custom Python code (not external libraries) this is worth

trying!

https://pypy.org/

N
Outline

= |ntroduction
= Profiling

= Data Structures
= Generators
= Accelerators
= Syntax

BOSTON
UNIVERSITY

-
Python Syntax

= Here are some common ways where Python syntax can result in
unintended consequences.

BOSTON
UNIVERSITY

Best to avoid this

String concatenation

a list of some strings
strs = ['a'",'b",'c",...]
S — mww
= Avoid excessive use of ‘+’ as each ‘+ — |for 1 in étrsr
creates a temporary string. s += 1

= Very time and memory-intensive in loops.
Less code, faster, and less memory.

. i : : — : strs = ['a','b","'c",...]
|f strlngs are in a list .(or similar thing) use ~=|s = " .5oin(strs)
the string join() function.

= Building a string in a loop? Append them g = [

to a list then jOIn() for idx,elem in enumerate (some data):
doing something...

record a message/result/etc
msg.append('Step %s complete\n' % idx)
Now concatenate

BOSTON o
neg = ' join (nso)

. - x=1[1,2,3,4]
SlICe NOtathﬂ # v is a new list
y = x[0:2]
: . # y ——> [112]
= Lists: x[0:2] = [-5,-6]
= RHS list slicing copies lists # lst two elements
= LHS list slicing overwrites elements # of x are overwritten
f x —=> [_51_6/314]

= Numpy ndarrays: numpy.array([1,2,3,4])

. . I I 1 t
= RHS ndarray slicing creates a Numpy z i?oézylew e
view --> x0:2] --> [1,2]

X #HE= X
O K

= LHS ndarray slicing overwrites elements [0:2] = [-5,-6]

1lst two elements

of x are overwritten
x —--> [-5,-6,3,4]

v ——> x[0:2] --> [-5,-6]

BOSTON
UNIVERSITY

NoO.
x=]
The del command 00
for i in range(N):
))) f 13 M) :
= Temporary variables in loops — avoid o ;O”S‘O;Ziiiﬁg’that
the de1 command to clear out lists. # adds stuff to x

sum += sum(x)

= The de1 works by marking the elements of
clear out x

list x for deletion at some later time, not

when the de1 is called. del xI:]
= The cleared elements of x aren’t cleaned

up until x goes out of scope. Yes.
= This can result in a surprising amount of sum = 0.0

. for 1 in range(N):
memory consumption! x = []
L x =
////////’ for j in range (M) :
= |nstead re-declare x with each inner # do something that
_ _ # adds stuff to x

loop iteration. sum += sum(x)

BOSTON
UNIVERSITY

Open files with with import glob

import os
files = glob.glob(os.path.join(img dir,'*.dat'"))

Do something with each data file
= The Python with command when for datfile in files:

opening files will auto-handle the dat=open (datfile,'r")

)) some func(dat.read())

CIOSlng Of the flle- # If there are enough files and you
don't call this:

dat.close ()

this loop WILL CRASH when you hit
your open file limit.

H= H= FH= HE

= The operating system limits the
Life is better with "with" :

number of files that can be for datfile im files:
opened...it's easy to forget a file with open(datfile,'r') as dat:
some func(dat.read())
'Close() Ca”' # this guarantees the open file is

closed when this code block ends
dat.close() ## this is now optional.

BOSTON
UNIVERSITY

Python’s itertools and functools libraries

= These two libraries are full of highly useful tools for manipulating Python
functions and data structures.

= Well worth checking out!

= |tertools: = functools:
= “The module standardizes a core set of fast, memory = “The functools module is for higher-order functions:
efficient tools that are useful by themselves or in functions that act on or return other functions. In
combination. Together, they form an “iterator algebra” general, any callable object can be treated as a
making it possible to construct specialized tools function for the purposes of this module.”

succinctly and efficiently in pure Python.”

BOSTON
UNIVERSITY

https://docs.python.org/3.6/library/itertools.html
https://docs.python.org/3.6/library/functools.html

End-of-course Evaluation Form

= Please visit this page and fill in the evaluation form for this course.

= Your feedback is highly valuable to the RCS team for the improvement
and development of tutorials.

= |f you visit this link later please make sure to select the correct tutorial —
name, time, and location.

http://scv.bu.edu/survey/tutorial _evaluation.html

BOSTON
UNIVERSITY

http://scv.bu.edu/survey/tutorial_evaluation.html

	Slide 1: Python Optimization
	Slide 2: Run Spyder
	Slide 3: Outline
	Slide 4: Optimization
	Slide 5: Why Bother to Optimize?
	Slide 6: Some words of wisdom, lightly paraphrased
	Slide 7: Outline
	Slide 8: Profiling
	Slide 9: Profiling Drawbacks
	Slide 10: Python Profiling Tools
	Slide 11: Additional Profiling Tools
	Slide 12: A simple sample code
	Slide 13: Profiling: manual timing
	Slide 14: Function Decorators
	Slide 15: Better Manual Profiling
	Slide 16: Spyder Timing
	Slide 17: Spyder Timing
	Slide 18: Profiling: Using the Python Profiler
	Slide 19: Spyder Profiling Output
	Slide 20: Timing and Profiling in a Jupyter Notebook
	Slide 21: Command Line Python Profiling
	Slide 22: Python Profiling Tools
	Slide 23: kcachegrind
	Slide 24: snakeviz
	Slide 25: Line-by-Line Profiling
	Slide 26: Run kernprof
	Slide 27: line_profiler from within Spyder
	Slide 28: line_profiler from within Jupyter with %lprun
	Slide 29: Memory Usage Profiling
	Slide 30: More ways to run…
	Slide 31
	Slide 32: 2x memory usage…?
	Slide 33: Fix and re-profile the results.
	Slide 34: Other Profiling Tools
	Slide 35: Intel Vtune Amplifier
	Slide 36: Scalene
	Slide 37: Profiling process
	Slide 38: Algorithm example
	Slide 39: Outline
	Slide 40: Data Structures
	Slide 41: Python data structures are fast when used for:
	Slide 42: Let’s compare…
	Slide 43: Performance
	Slide 44: Lists
	Slide 45: Sets
	Slide 46: Understand your data
	Slide 47: Graphs
	Slide 48: Numpy and Pandas
	Slide 49: Pandas
	Slide 50: Avoid numpy.append()!
	Slide 51: Some Numpy examples
	Slide 52: Outline
	Slide 53: Generators
	Slide 54: range()
	Slide 55: List comprehensions as generators
	Slide 56: Generator Functions
	Slide 57: Outline
	Slide 58: numba
	Slide 59: numba
	Slide 60
	Slide 61: A numba example
	Slide 62: numexpr
	Slide 63: f2py
	Slide 64: Rapids.ai
	Slide 65: Intel Distribution for Python
	Slide 66: PyPy
	Slide 67: Outline
	Slide 68: Python Syntax
	Slide 69: String concatenation
	Slide 70: Slice Notation
	Slide 71: The del command
	Slide 72: Open files with with
	Slide 73: Python’s itertools and functools libraries
	Slide 74: End-of-course Evaluation Form

