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Run Spyder

▪ Start the Anaconda 

Navigator

▪ Click on Spyder’s

Launch button

▪ Be patient…it takes a 

while to start.
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Optimization

▪ What are you optimizing?

▪ Run time

▪ Memory usage

▪ I/O (storage read/write)

▪ Code structure 

▪ Algorithm selection

▪ How do you decide when 

optimization is necessary?

▪ What should be changed in a 

program during optimization?

▪ Is Python fast?



Why Bother to Optimize?

▪ Computers aren’t getting 

much faster.

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

▪ Easier access to data 

means there’s more 

computation possible than 

in the past.

▪ Better code means you can 

get more done!

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


Some words of wisdom, lightly paraphrased

▪ Before you make your code faster:

▪ Make it right 

▪ Make it clear

▪ Keep it right when you make it faster. 

▪ Fundamental improvements in performance are most often 

made by algorithm changes, not by tuning. 

The Elements of Programming Style, by Brian W. Kernighan and P. J. Plauger, 1974.

https://en.wikipedia.org/wiki/The_Elements_of_Programming_Style
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Profiling

▪ Before making code changes 

you must profile the code.

▪ We are really bad at 

guessing how different parts 

of programs perform!

▪ This is independent of your 

degree of programming 

experience.

▪ Ways to profile:

▪ Insert timing statements into 

your code

▪ Laborious but useful.

▪ Use profiling tools that can 

measure:

▪ Function call times

▪ Line-by-line execution times

▪ Memory consumption

▪ CPU hardware utilization



Profiling Drawbacks

▪ Your program can take much 

longer to run when it is being 

profiled.

▪ It may consume more 

memory.

▪ A small test problem might 

be too small to reveal 

performance problems.



Python Profiling Tools

▪ The Python Standard Library 

includes two profilers:

▪ cProfile   (default)

▪ profile

▪ Documentation is online.

▪ Sypder & Jupyter have 

special timing commands:

▪ %time – time a line of code

▪ %timeit – benchmark a line of 

code

▪ Jupyter:

▪ %%time and %%timeit at the 

top of a cell times the whole 

cell.

https://docs.python.org/3.6/library/profile.html


Additional Profiling Tools

▪ line_profiler

▪ Line-by-line timing statistics for 

selected functions. 

▪ memory_profiler

▪ Line-by-line memory usage 

statistics for selected functions.

▪ For all python3 modules.

▪ We’ll use two other profilers today:

We’ll pause here to make sure everyone has this installed in their Anaconda setups.

If you’re using the SCC and the python3/3.12.4 module they’re already installed.

https://github.com/rkern/line_profiler
https://pypi.org/project/memory-profiler/


A simple sample code

▪ Open row_vs_col_orig.py

▪ This does a simple 

calculation where a Numpy 

matrix (i.e. a 2D table) is 

multiplied by a constant 

value.

▪ 3 implementations:
▪ Calculate the new matrix values by 

multiplying the constant against 

whole rows at a time

▪ …by multiplying against whole 

columns at a time

▪ …using Numpy’s built-in element-by-

element multiplication syntax.



Profiling: manual timing

▪ Two ways:

▪ time.perf_counter():

▪ Returns a floating point value 

representing a time.  

▪ time.time():

▪ Floating point value of seconds 

since Jan. 1, 1970, 00:00:00

▪ Use the Python time library: 

https://docs.python.org/3/library/time.html 

▪ Next, open row_vs_col_timing.py

 

▪ This does manual timing of the 

function calls.

▪ Which version is the fastest?

▪ Change the size of the matrix – does 

this change your result?

import time

st = time.perf_counter()

# do something...

et = time.perf_counter()

print(f'Elapsed (sec): {et-st:.3f}')

https://docs.python.org/3/library/time.html


Function Decorators

▪ These are wrappers around 

functions.

▪ Written as Python functions.

▪ You can intercept a function 

call and do whatever you like 

before calling the wrapped 

function.

▪ After the function you can 

again do whatever you like 

before returning values.

my_func(args)

decorator

do more…

do something…

# Add a decorator to a 

# function

@decorator

def my_func(x,y,z):

...

...

# call the function:

my_func(1,2,3)



Better Manual Profiling

▪ Open row_vs_col_decorator.py

▪ This implements a function 

decorator to automatically time 

function calls.

▪ How it works:

▪ Intercept a call to a function 

and start a timer.

▪ Call the function.

▪ Intercept the function return, 

stop the timer.

▪ Print out the elapsed time.

▪ Return the function’s return 

value.



Spyder Timing

▪ In the Python console use:

▪ %time …python code…

▪ Prints time to run the code

▪ %timeit …python code…

▪ Runs the code multiple times, reports timing 

statistics



Spyder Timing

▪ In source code you can label 
a cell with #%%

▪ Then put %%time or 

%%timeit at the top of the 

cell. 

▪ These are NOT PYTHON 

commands – don’t leave 

them in your code.

Console output



Profiling: Using the Python Profiler

▪ Return to row_vs_col_orig.py

▪ Spyder can run the Python profiler for 

you.

▪ Choose the menu option Run→Profile



Spyder Profiling Output

▪ The Profiler tab shows total time spent in each function.

▪ If functions call functions those calls can be shown as well – click 

the triangles to expand the results.



Timing and Profiling in a Jupyter Notebook

▪ Simple timing can be done with the same 

commands.

▪ %time, %timeit – apply to a single line of code

▪ %%time, %%timeit – apply to a cell. Place 

these at the top of the cell.

▪ %prun runs the Python profiler for a 

function call.

▪ To see help add a ?:  %time?



Command Line Python Profiling

▪ Command line profiling 

results are printed to the 

screen or can be saved to a 

file.

▪ This can be done inside of a 

batch job on the SCC…

▪ Syntax:
python -m cProfile run.py

▪ Sort by statistics:
python -m cProfile –s time run.py

▪ Best use – save to a file and use a 

utility to study the output:

python -m cProfile –o prof.out run.py

https://docs.python.org/3.6/library/profile.html#the-stats-class


Python Profiling Tools

▪ kcachegrind

▪ Run using the Centos7 environment:
▪ scc-centos7 kcachegrind

▪ Convert prof.out to the required file 

format open kcachegrind:

▪ snakeviz

▪ Runs in a browser

▪ To use:

▪ The SCC has 2 profiling visualization tools for Python

python -m cProfile –o prof.out run.py

# pyprof2calltree is part of the

# python3/3.12.4 module.

pyprof2calltree -i prof.out -o prof.log

scc-centos7 kcachegrind prof.log

# 1st load your python3 module

# one-time install

pip install --user snakeviz

~/.local/bin/snakeviz prof.out

http://kcachegrind.sourceforge.net/html/Documentation.html
https://jiffyclub.github.io/snakeviz/


kcachegrind



snakeviz

▪ Can be embedded into a 

Jupyter notebook:

%load_ext snakeviz

%snakeviz python_code_to_time...

In a Jupyter notebook:



Line-by-Line Profiling

▪ We’ve installed the 

line_profiler library.

▪ To use with kernprof, a 

command line tool:

▪ Decorate functions with 

@profile

▪ Do this for each function in 

row_vs_col_orig.py

from line_profiler import profile 

@profile

def row_by_row(A,mat):

''' compute mat = A*mat row-by-row '''

...



Run kernprof

kernprof -l –o line.lprof row_vs_col_orig.py

python -m line_profiler line.lprof

Timer unit: 1e-06 s

Total time: 0.204861 s

File: row_vs_col_orig.py

Function: row_by_row at line 32

Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

    32                                           @profile

    33                                           def row_by_row(A,x):

    34                                               ''' compute x = A*x row-by-row '''

    35         1          5.0      5.0      0.0      rows = x.shape[0]

    36     10001       5605.0      0.6      2.7      for i in range(rows):

    37     10000     199251.0     19.9     97.3          x[i,:] = x[i,:] * A

    38         1          0.0      0.0      0.0      return x



line_profiler from within 

Spyder

▪ Manually add the profiling to your script, 

run as usual.

▪ Older versions of Spyder (version 4) had 

a plug-in that loaded line_profiler results 

into the Spyder GUI. This does not exist 

for Spyder v5. 

import line_profiler

profile = line_profiler.LineProfiler()

# function definitions here...

# Select the functions 

profile.add_function(func_a)

profile.add_function(func_b)

profile.enable()

# run the rest of your program

# as usual...

# Turn off profiling, print the results.

profile.disable()

# Print the results

profile.print_stats()



line_profiler from within 

Jupyter with %lprun

▪ Option 1: Manually add to your 

script as in the previous slide.

▪ Option 2: Load the line-by-line 

profiler in your notebook and 

profile functions.

▪ %lprun is the line-by-line profiler

def my_func(a,b,c):

…python code…

def looping(N,a,b,c):

for i in range(N):

my_func(a,b,c)

%load_ext line_profiler

N = 100

a = b = c = 1.0

# profile my_func as it gets 

# called by looping(). The

# @profile decorator is not

# needed.

%lprun –f my_func looping(N,a,b,c)

# line profiler output prints...



Memory Usage Profiling

▪ The memory_profiler library 

is used in a similar fashion.

▪ To use:

▪ Decorate functions with 

@profile

▪ Run the script with the 

memory_profiler library.

▪ The output is printed to the 

screen.

@profile

def row_by_row(A,mat):

''' compute mat = A*mat row-by-row '''

...

python -m memory_profiler row_vs_col_orig.py



More ways to run…

▪ Import the library and 

decorate functions

▪ Jupyter

▪ Load the memory profiler

▪ Use %memit to get the peak 

memory used by a function 

call.

▪ Separate notebook files can be profiled 

with %mprun

▪ See this web page for details.

import memory_profiler as mp

@mp.profile

def some_func(x,y,z):

time.sleep((x+y+z)/3)

    

# Run as usual

https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html


▪ Set mat_size = 10000. Output of:      python -m memory_profiler row_vs_col_orig.py

Filename: row_vs_col_orig.py

Line #    Mem usage    Increment   Line Contents

================================================

    40  808.535 MiB  808.535 MiB   @profile

    41                             def col_by_col(A,mat):

    42                                 ''' compute mat = A*mat col_by_col '''

    43  808.535 MiB    0.000 MiB       cols = mat.shape[1]

    44  808.535 MiB    0.000 MiB       for i in range(cols):

    45  808.535 MiB    0.000 MiB           mat[:,i] = A * mat[:,i] 

    46  808.535 MiB    0.000 MiB       return x

Filename: row_vs_col_orig.py

Line #    Mem usage    Increment   Line Contents

================================================

    48  808.535 MiB  808.535 MiB   @profile

    49                             def built_in(A,mat):

    50                                 ''' A*mat using built-in element-by-element'''

    51 1571.477 MiB  762.941 MiB       return A * mat

Whoa!



2x memory usage…?

▪ This function is calculating the 

correct quantity.

▪ The syntax creates a new 

numpy array to hold the result 

which is returned.

▪ This is an in-place calculation:

def built_in(A,mat):

return A * mat

mat = built_in(scaling_value, mat)

def row_by_row(A,mat):

rows = mat.shape[0]

for i in range(rows):

mat[i,:] = A * mat[i,:]

return x



Fix and re-profile the results.

▪ Using the profiling in Spyder:

def built_in(A,mat):

mat[:] = A * mat

return mat

Function Time (msec)

row_by_row 183.57

col_by_col 2870.05

built_in (original version) 576.27

built_in (in-place version) 764.87

Line #    Mem usage    Increment   Line Contents

================================================

    46  808.543 MiB  808.543 MiB   @profile

    47                             def built_in(A,mat):

    48  808.543 MiB    0.000 MiB       mat[:] = A * mat

    49  808.543 MiB    0.000 MiB       return mat

▪ Memory usage is 

down:

Interesting!  More 

memory usage is 

faster…



Other Profiling Tools

▪ So far we’ve used:

▪ Python’s built-in profiler

▪ line_profiler

▪ memory_profiler

▪ Here are three more to 

consider:

▪ Intel Vtune Profiler

▪ Intel Advisor

▪ Scalene



Intel Vtune Amplifier

▪ A comprehensive tool from Intel that can 

analyze Python scripts and the libraries 

they call for:

▪ Function call times

▪ “hotspots” – lines of code that consume 

excess time

▪ Memory allocations

▪ CPU and memory utilitization

▪ Check out their tutorials and 

documentation.

▪ Available in the intel/2024.0 module

module load intel/2024.0

vtune-gui &

▪ Also see the Intel Advisor:    advisor-gui &

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/introduction/tutorials-and-samples.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html#gs.16u03w


Scalene

▪ A new profiling tool from UMass 

Amherst.

▪ Easy to install (for Linux, 

Windows, and Mac):

▪ pip install scalene

▪ Performs CPU, GPU, and 

memory profiling. 
▪ The report is in HTML format and is displayed 

in a web browser.

▪ This can be called from within Jupyter 

notebooks as well as from a command line.

https://github.com/plasma-umass/scalene
https://github.com/plasma-umass/scalene
https://github.com/plasma-umass/scalene


Profiling process

▪ Start with function-level 

profiling:

▪ Spyder profiling

▪ cProfile with kcachegrind or 

snakeviz

▪ Identify problem functions.

▪ LEARN THE TOOLS.

▪ Read the docs!

▪ Line profiler is slower than 

function timing so use where 

needed.

▪ Use memory profiling when it 

seems necessary.

▪ Excess memory usage

▪ Performance issues not easily solved 

with other methods.



Algorithm example

▪ Sometimes we have code 

that is written poorly.

▪ Profiling tells us where the 

problems are but we still 

need to find solutions.

▪ Let’s look at an example and 

see if you can identify areas 

of poor performance:

bixi_slow.py
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Data Structures

▪ Algorithm implementation and 

performance is highly dependent 

on underlying data structures.

▪ Wikipedia has a long list of 

established data structures.

▪ Find Python implementations at 

https://pypi.org

▪ Python data structures:

▪ List

▪ Dictionary

▪ Aka “associative array”

▪ Sets

▪ Tuples

▪ These are sufficient to underpin a 

vast variety of algorithms.

▪ For manipulating numeric data 

use Numpy ndarrays or Pandas 

Dataframes.

https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://pypi.org/project/memory-profiler/


Python data structures are fast when used for:

▪ Lists:

▪ Appending

▪ Element getting/setting

▪ Removing from the end “pop()”

▪ Get length

▪ Tuples (fixed lists):

▪ Element getting

▪ Get length

▪ Dictionaries:

▪ Element getting/setting

▪ Element membership

▪ Element insertion

▪ Sets: 

▪ Element membership

▪ Set operations (unions, 

intersections, etc)



Let’s compare…

▪ Sample data: names of finishers 

of the 2015 and 2017 Boston 

Marathons

▪ Open files marathon_list.py and 

marathon_set.py

▪ Question: Who finished both the 

2015 and 2017 marathons?

▪ Two implementations:

▪ marathon_list.py loads the data 

into a pair of lists and then 

loops through them.

▪ marathon_set.py loads the 

data into a pair of sets and 

intersects them.

Data source: https://www.kaggle.com/rojour/boston-results/data

https://www.kaggle.com/rojour/boston-results/data


Performance

▪ Test each script  using the 

Spyder profiler.

▪ Run it more than once – 

sometimes library or other 

code loading gives false 

timing.

▪ What did you find?

▪ Which one is faster?

▪ Are the results the same?



Lists

▪ The list lookup is ~6300x slower than 

the set intersection!

▪ Algorithm: For each element in list A 

check to see if it’s in list B.

▪ On average you need len(B)/2 

comparisons for every element in A.

▪ That’s approx. len(A) * len(B)/2 

operations.  Each comparison is pretty 

fast.

▪ For 26000 runners that’s ~350M string 

comparisons.

x

x

A B



Sets

▪ Sets use a special data structure called a hash 

table to store elements.

▪ Also used for dictionary keys.

▪ The underlying hash function is very fast.

▪ Lookup speed is nearly constant regardless of the 

size of the set.

▪ Algorithm: For each element in set A 

check to see if it’s in set B.

▪ You need len(A) lookups into B. Each 

lookup in B takes a constant time .

▪ That’s len(A) operations of time  

▪ For 26000 runners there are 26000 hash 

comparisons.

▪ How do you choose?

▪ Test your code on different problem sizes.

▪ Profile your code if testing reveals problems.

▪ Read the documentation for available tools and libraries.

▪ Email RCS for help.

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table


Understand your data

▪ Why were the results different?

▪ Sets only store unique values so 

some names got dropped.

▪ A better set solution would use a 

combination of factors to be more 

robust.

▪ Example store this in the set as a tuple: 

(name, city, country, gender)



Graphs

▪ Some data is naturally 

understood as a graph.
▪ A graph of people and their social 

connections to other people.

▪ Contact tracing during a pandemic.

▪ Journal articles and their authors.

▪ Python libraries: networkx, 

igraph, graph-tool
▪ Networkx is pure Python – it 

builds its graphs on a “dictionary 

of dictionaries of dictionaries”

▪ igraph is in C and C++.

▪ graph-tool is in C++.

https://networkx.org/documentation/latest/
https://igraph.org/
https://graph-tool.skewed.de/static/doc/index.html


Numpy and Pandas

▪ Numpy ndarrays are 

intended for high speed 

numeric calculations.

▪ Pandas dataframes are 

composed of ndarrays – 

similar pros & cons

▪ Use built-in numpy functions 

wherever possible

▪ If x is an ndarray…

▪ numpy.abs(x) can operate on a 

whole ndarray.

▪ math.abs(x) requires a Python 

loop

▪ Choose appropriate data types: 

float32, int, etc.

▪ Pre-allocate ndarrays to the correct 

size.

▪ Overwrite values with left-hand slice 

notation.

Optimal usage:



Pandas

▪ Read the Pandas docs that 

give performance tips.

▪ Also – docs on scaling 

Pandas to large data sets.

▪ Want to use multiple cores?

▪ Have really big data sets to 

process?

▪ Or both?

▪ Check out Dask and its 

DataFrame implementation.

https://pandas.pydata.org/docs/user_guide/enhancingperf.html
https://pandas.pydata.org/docs/user_guide/scale.html
https://pandas.pydata.org/docs/user_guide/scale.html
https://www.dask.org/


Avoid numpy.append()!

▪ This also applies to 
pandas.Dataframe.append()

▪ numpy.append() for an ndarray 

with N elements:
▪ Allocate a new ndarray of size N+1

▪ Copy over the existing data

▪ Copy in the new element.

▪ Deallocate the old ndarray of N elements.

1 1 1 1x=numpy.ones(4)

x=numpy.append(x,2)

x

new

copy:

1 1 1 1

1 1 1 1

copy: 1 1 1 1 2

x 1 1 1 1 2

1 1 1 1delete



Some Numpy examples 

▪ Open numpy_solutions.py

▪ Examples are provided for append(), pre-allocation, and 

proper use of library calls.
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Generators

▪ A Python generator is a function that behaves like an iterator.

▪ An iterator returns every element of a collection.
▪ Example: a for loop iterates over the elements of a Python list.

▪ Generators can be used to create sequences of values one value at a 

time.



range()

▪ The range() function in Python is a generator.

▪ Try:  print(range(4)) 

▪ It won’t print out any numbers – the output is not a list.

▪ range() returns a generator that can be iterated over to produce a sequence of integers.

for x in range(1,4):

print(x)

# Output:

#    1

#    2

#    3



List comprehensions as generators

▪ List comprehensions are handy ways to 

create and manipulate lists.

▪ Intermediate lists or ones that are 

created and discarded still need to 

allocate memory.

▪ Generator syntax: use ( ) instead of [ ]

▪ No lists are created…little additional 

memory.

strs = ['call','me','ishmael']

# uppercase all the strings

caps = [L.upper() for L in strs]

# Print them out

for c in caps:

print(caps)

    

gcaps = (L.upper() for L in strs)

for g in gcaps:

print(g)

Let’s visualize this!

https://pythontutor.com/render.html#code=strs%20%3D%20%5B'call','me','ishmael'%5D%0A%0A%23%20uppercase%20all%20the%20strings%0Acaps%20%3D%20%5BL.upper%28%29%20for%20L%20in%20strs%5D%0A%0A%23%20Print%20them%20out%0Afor%20c%20in%20caps%3A%0A%20%20%20%20print%28c%29%0A%20%20%20%20%0A%0Agcaps%20%3D%20%28L.upper%28%29%20for%20L%20in%20strs%29%0Afor%20g%20in%20gcaps%3A%0A%20%20%20%20print%28g%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false


Generator Functions

▪ A generator function is written with 
the yield keyword.

▪ It will generate values until it reaches 
a return statement or throws a 

StopIteration exception.

▪ Every yield will return a value but 

the function keeps running until it 

returns.

import random

def triple_ran(N):

''' Return N tuples of 3

random numbers.'''

for i in range(N):

vals=(random.random(),

random.random(),

random.random())

yield vals 

return # optional 

for triplet in triple_ran(4):

print('%1.3f %1.3f %1.3f' % triplet)

# 0.070 0.363 0.821

# 0.668 0.705 0.235

# 0.384 0.817 0.071

# 0.633 0.303 0.591

Visualize!

https://pythontutor.com/render.html#code=import%20random%0A%23%20best%20practice%20is%20to%20use%20numpy.random.default_rng%28%29%0A%23%20but%20this%20website%20doesn't%20support%20numpy.%0A%0Adef%20triple_ran%28N%29%3A%0A%20%20%20%20'''%20Return%20N%20tuples%20of%203%0A%20%20%20%20%20%20%20%20random%20numbers.'''%0A%20%20%20%20for%20i%20in%20range%28N%29%3A%0A%20%20%20%20%20%20%20%20vals%3D%28random.random%28%29,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20random.random%28%29,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20random.random%28%29%29%0A%20%20%20%20%20%20%20%20yield%20vals%20%0A%20%20%20%20return%20%23%20optional%20%0A%0Afor%20triplet%20in%20triple_ran%284%29%3A%0A%20%20%20%20print%28'%251.3f%20%251.3f%20%251.3f'%20%25%20%20triplet%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false
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numba

▪ The numba library can translate portions of your Python code and compile 

it into machine code on demand.

▪ Achieves a significant speedup compared with regular Python.

▪ Compatible with numpy ndarrays and a growing number of Python 

datatypes.

▪ Can generate code to execute automatically on GPUs.

http://numba.pydata.org/


numba

▪ The @njit decorator is used to 

indicate which functions are 

compiled.

▪ Options:
▪ GPU code generation

▪ Parallelization

▪ Caching of compiled code

▪ Can produce faster array code 

than pure NumPy statements.

from numba import njit

# This will get compiled when it’s 

# FIRST EXECUTED. The result will be

# cached for re-use.

@njit(cache=True)

def average(x, y, z):

return (x + y + z) / 3.0

    

# With type information this one gets

# compiled when the file is READ.

@njit (float64(float64,float64,float64))

def average_eager(x, y, z):

return (x + y + z) / 3.0

 



▪ A snippet of code from a program processing ~5B rows of data.

▪ The data was processed via chunks of 100M rows into Pandas 

dataframes.

▪ Profiling showed that this weight calculation was a bottleneck. Sped 

up with numba and 4 threads. 

import numpy as np

import numba 

@numba.njit(cache=True, fastmath=True, parallel=True)

def modify_weights(w):

''' w: numpy array of the weights

returns: new numpy array '''

# \ is the Python "line continuation"

return -np.log(np.exp(-11.13 + 0.366 * w) / \

(1 + np.exp(-11.13 + 0.366 * w)))

# ...later in the code process a column in a

# Pandas dataframe and replace it with the

# modified value.

# numba.set_num_threads() was called earlier 

# to enable parallel computation.

df['weight'] = modify_weights(df['weight'].to_numpy(dtype=np.float32))



A numba example

Open mandelbrot.py



numexpr

▪ Another acceleration library for 

Python. 
▪ This one seems to be waning in popularity

▪ Useful for speeding up specific 

ndarray expressions.
▪ Typically 2-4x faster than plain NumPy

▪ Code needs to be edited to move 

ndarray expressions into the 
numexpr.evaluate() function:

import numpy as np

import numexpr as ne

a = np.arange(10)

b = np.arange(0, 20, 2)

# Plain NumPy

c = 2 * a + 3 * b

# Numexpr

d = ne.evaluate("2*a+3*b")

https://github.com/pydata/numexpr


f2py

▪ Fortran code can be lightly modified and re-compiled 

into Python compatible functions.

▪ High performance routines are relatively easy to code in 

Fortran 95/2003.

▪ f2py is part of the numpy library.

▪ Compiled Fortran code can be >100x faster than 

equivalent Python code.

https://numpy.org/doc/stable/f2py/


Rapids.ai

▪ “GPU Accelerated Data Science”

▪ Provides a number of libraries that execute on the GPU

▪ These are 
▪ Pandas → cudf

▪ scipy, numpy → cupy

▪ scikit-learn → cuml

▪ Dask → dask-cuda

▪ networkx → cugraph

▪ And lots more

▪ Easiest install on the SCC:
▪ Use a conda env

https://rapids.ai/
https://github.com/rapidsai
https://docs.rapids.ai/install?_gl=1*jynlww*_ga*NzUwMDUzMjMxLjE3MTg3MjUxMjI.*_ga_RKXFW6CM42*MTcxODcyNTEyMS4xLjEuMTcxODcyNTM1OC40MS4wLjA.#selector


Intel Distribution for Python

▪ Intel has a customized distribution of Python for Linux and Windows.

▪ Quote:

▪ Here’s an example of using the Data Parallel Extension for Numpy for auto-parallelizing 

Numpy code.

• Scalable performance using all available CPU cores on laptops, desktops, and powerful 

servers

• Support for the latest CPU instructions

• Near-native performance through acceleration of core numerical and machine learning 

packages with libraries like the Intel® oneAPI Math Kernel Library (oneMKL) and Intel® 

oneAPI Data Analytics Library

• Productivity tools for compiling Python code into optimized instructions

• Essential Python bindings for easing integration of Intel native tools with your Python project

https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-for-python.html#gs.mdbqvz
https://intelpython.github.io/dpnp/quick_start_guide.html#examples


PyPy

▪ PyPy is an alternate 

implementation of the Python 

interpreter.

▪ It is mostly compatible with 

Python libraries
▪ Popular libraries (numpy, pandas) will 

work

▪ For Python code PyPy is ~3x 

faster than regular Python.

▪ If you have a program where most of the work occurs in 

custom Python code (not external libraries) this is worth 

trying!

https://pypy.org/


Outline

▪ Introduction

▪ Profiling

▪ Data Structures

▪ Generators

▪ Accelerators

▪ Syntax



Python Syntax

▪ Here are some common ways where Python syntax can result in 

unintended consequences.



String concatenation

▪ Avoid excessive use of ‘+’ as each ‘+’ 

creates a temporary string.  

▪ Very time and memory-intensive in loops.

▪ If strings are in a list (or similar thing) use 

the string join() function.

▪ Building a string in a loop? Append them 

to a list then join().

# a list of some strings

strs = ['a','b','c',...]

s = ""

for i in strs:

s += i

strs = ['a','b','c',...]

s = "".join(strs)

Best to avoid this

Less code, faster, and less memory.

msg = []

for idx,elem in enumerate(some_data):

# doing something...

# record a message/result/etc

msg.append('Step %s complete\n' % idx)

# Now concatenate

msg = ''.join(msg)



Slice Notation

▪ Lists:

▪ RHS list slicing copies lists 

▪ LHS list slicing overwrites elements

▪ Numpy ndarrays:

▪ RHS ndarray slicing creates a Numpy 

view

▪ LHS ndarray slicing overwrites elements

x = [1,2,3,4]

# y is a new list 

y = x[0:2]

# y --> [1,2]

x[0:2] = [-5,-6]

# 1st two elements

# of x are overwritten

# x --> [-5,-6,3,4]

x = numpy.array([1,2,3,4])

# y is a view into x

y = x[0:2]

# y --> x0:2] --> [1,2]

x[0:2] = [-5,-6]

# 1st two elements

# of x are overwritten

# x --> [-5,-6,3,4]

# y --> x[0:2] --> [-5,-6]



The del command

▪ Temporary variables in loops – avoid 
the del command to clear out lists.

▪ The del works by marking the elements of 

list x for deletion at some later time, not 

when the del is called.

▪ The cleared elements of x aren’t cleaned 

up until x goes out of scope.

▪ This can result in a surprising amount of 

memory consumption!

▪ Instead re-declare x with each inner 

loop iteration.

x=[]

sum = 0.0

for i in range(N):

for j in range(M):

# do something that

# adds stuff to x 

sum += sum(x)

# clear out x 

del x[:]

sum = 0.0

for i in range(N):

x = [] 

for j in range(M):

# do something that

# adds stuff to x 

sum += sum(x)

No.

Yes.



Open files with with

▪ The Python with command when 

opening files will auto-handle the 

closing of the file.

▪ The operating system limits the 

number of files that can be 

opened…it’s easy to forget a file 

.close() call.

import glob

import os 

files = glob.glob(os.path.join(img_dir,'*.dat'))

# Do something with each data file  

for datfile in files:

dat=open(datfile,'r') 

some_func(dat.read())

# If there are enough files and you 

# don't call this:

# dat.close()

# this loop WILL CRASH when you hit

# your open file limit.

# Life is better with "with" :

for datfile in files:

with open(datfile,'r') as dat:

some_func(dat.read())

# this guarantees the open file is

# closed when this code block ends 

dat.close() ## this is now optional.



Python’s itertools and functools libraries

▪ These two libraries are full of highly useful tools for manipulating Python 

functions and data structures.

▪ Well worth checking out!

▪ functools:
▪ “The functools module is for higher-order functions: 

functions that act on or return other functions. In 

general, any callable object can be treated as a 

function for the purposes of this module.”

▪ itertools: 
▪ “The module standardizes a core set of fast, memory 

efficient tools that are useful by themselves or in 

combination. Together, they form an “iterator algebra” 

making it possible to construct specialized tools 

succinctly and efficiently in pure Python.”

https://docs.python.org/3.6/library/itertools.html
https://docs.python.org/3.6/library/functools.html


End-of-course Evaluation Form

▪ Please visit this page and fill in the evaluation form for this course.

▪ Your feedback is highly valuable to the RCS team for the improvement 

and development of tutorials.

▪ If you visit this link later please make sure to select the correct tutorial – 

name, time, and location.

http://scv.bu.edu/survey/tutorial_evaluation.html

 

http://scv.bu.edu/survey/tutorial_evaluation.html
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