
Python Optimization

Summer 2025

Research Computing Services

IS & T

Run Spyder

▪ Start the Anaconda

Navigator

▪ Click on Spyder’s

Launch button

▪ Be patient…it takes a

while to start.

Outline

▪ Introduction

▪ Profiling

▪ Data Structures

▪ Generators

▪ Accelerators

▪ Syntax

Optimization

▪ What are you optimizing?

▪ Run time

▪ Memory usage

▪ I/O (storage read/write)

▪ Code structure

▪ Algorithm selection

▪ How do you decide when

optimization is necessary?

▪ What should be changed in a

program during optimization?

▪ Is Python fast?

Why Bother to Optimize?

▪ Computers aren’t getting

much faster.

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

▪ Easier access to data

means there’s more

computation possible than

in the past.

▪ Better code means you can

get more done!

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Some words of wisdom, lightly paraphrased

▪ Before you make your code faster:

▪ Make it right

▪ Make it clear

▪ Keep it right when you make it faster.

▪ Fundamental improvements in performance are most often

made by algorithm changes, not by tuning.

The Elements of Programming Style, by Brian W. Kernighan and P. J. Plauger, 1974.

https://en.wikipedia.org/wiki/The_Elements_of_Programming_Style

Outline

▪ Introduction

▪ Profiling

▪ Data Structures

▪ Generators

▪ Accelerators

▪ Syntax

Profiling

▪ Before making code changes

you must profile the code.

▪ We are really bad at

guessing how different parts

of programs perform!

▪ This is independent of your

degree of programming

experience.

▪ Ways to profile:

▪ Insert timing statements into

your code

▪ Laborious but useful.

▪ Use profiling tools that can

measure:

▪ Function call times

▪ Line-by-line execution times

▪ Memory consumption

▪ CPU hardware utilization

Profiling Drawbacks

▪ Your program can take much

longer to run when it is being

profiled.

▪ It may consume more

memory.

▪ A small test problem might

be too small to reveal

performance problems.

Python Profiling Tools

▪ The Python Standard Library

includes two profilers:

▪ cProfile (default)

▪ profile

▪ Documentation is online.

▪ Sypder & Jupyter have

special timing commands:

▪ %time – time a line of code

▪ %timeit – benchmark a line of

code

▪ Jupyter:

▪ %%time and %%timeit at the

top of a cell times the whole

cell.

https://docs.python.org/3.6/library/profile.html

Additional Profiling Tools

▪ line_profiler

▪ Line-by-line timing statistics for

selected functions.

▪ memory_profiler

▪ Line-by-line memory usage

statistics for selected functions.

▪ For all python3 modules.

▪ We’ll use two other profilers today:

We’ll pause here to make sure everyone has this installed in their Anaconda setups.

If you’re using the SCC and the python3/3.12.4 module they’re already installed.

https://github.com/rkern/line_profiler
https://pypi.org/project/memory-profiler/

A simple sample code

▪ Open row_vs_col_orig.py

▪ This does a simple

calculation where a Numpy

matrix (i.e. a 2D table) is

multiplied by a constant

value.

▪ 3 implementations:
▪ Calculate the new matrix values by

multiplying the constant against

whole rows at a time

▪ …by multiplying against whole

columns at a time

▪ …using Numpy’s built-in element-by-

element multiplication syntax.

Profiling: manual timing

▪ Two ways:

▪ time.perf_counter():

▪ Returns a floating point value

representing a time.

▪ time.time():

▪ Floating point value of seconds

since Jan. 1, 1970, 00:00:00

▪ Use the Python time library:

https://docs.python.org/3/library/time.html

▪ Next, open row_vs_col_timing.py

▪ This does manual timing of the

function calls.

▪ Which version is the fastest?

▪ Change the size of the matrix – does

this change your result?

import time

st = time.perf_counter()

do something...

et = time.perf_counter()

print(f'Elapsed (sec): {et-st:.3f}')

https://docs.python.org/3/library/time.html

Function Decorators

▪ These are wrappers around

functions.

▪ Written as Python functions.

▪ You can intercept a function

call and do whatever you like

before calling the wrapped

function.

▪ After the function you can

again do whatever you like

before returning values.

my_func(args)

decorator

do more…

do something…

Add a decorator to a

function

@decorator

def my_func(x,y,z):

...

...

call the function:

my_func(1,2,3)

Better Manual Profiling

▪ Open row_vs_col_decorator.py

▪ This implements a function

decorator to automatically time

function calls.

▪ How it works:

▪ Intercept a call to a function

and start a timer.

▪ Call the function.

▪ Intercept the function return,

stop the timer.

▪ Print out the elapsed time.

▪ Return the function’s return

value.

Spyder Timing

▪ In the Python console use:

▪ %time …python code…

▪ Prints time to run the code

▪ %timeit …python code…

▪ Runs the code multiple times, reports timing

statistics

Spyder Timing

▪ In source code you can label
a cell with #%%

▪ Then put %%time or

%%timeit at the top of the

cell.

▪ These are NOT PYTHON

commands – don’t leave

them in your code.

Console output

Profiling: Using the Python Profiler

▪ Return to row_vs_col_orig.py

▪ Spyder can run the Python profiler for

you.

▪ Choose the menu option Run→Profile

Spyder Profiling Output

▪ The Profiler tab shows total time spent in each function.

▪ If functions call functions those calls can be shown as well – click

the triangles to expand the results.

Timing and Profiling in a Jupyter Notebook

▪ Simple timing can be done with the same

commands.

▪ %time, %timeit – apply to a single line of code

▪ %%time, %%timeit – apply to a cell. Place

these at the top of the cell.

▪ %prun runs the Python profiler for a

function call.

▪ To see help add a ?: %time?

Command Line Python Profiling

▪ Command line profiling

results are printed to the

screen or can be saved to a

file.

▪ This can be done inside of a

batch job on the SCC…

▪ Syntax:
python -m cProfile run.py

▪ Sort by statistics:
python -m cProfile –s time run.py

▪ Best use – save to a file and use a

utility to study the output:

python -m cProfile –o prof.out run.py

https://docs.python.org/3.6/library/profile.html#the-stats-class

Python Profiling Tools

▪ kcachegrind

▪ Run using the Centos7 environment:
▪ scc-centos7 kcachegrind

▪ Convert prof.out to the required file

format open kcachegrind:

▪ snakeviz

▪ Runs in a browser

▪ To use:

▪ The SCC has 2 profiling visualization tools for Python

python -m cProfile –o prof.out run.py

pyprof2calltree is part of the

python3/3.12.4 module.

pyprof2calltree -i prof.out -o prof.log

scc-centos7 kcachegrind prof.log

1st load your python3 module

one-time install

pip install --user snakeviz

~/.local/bin/snakeviz prof.out

http://kcachegrind.sourceforge.net/html/Documentation.html
https://jiffyclub.github.io/snakeviz/

kcachegrind

snakeviz

▪ Can be embedded into a

Jupyter notebook:

%load_ext snakeviz

%snakeviz python_code_to_time...

In a Jupyter notebook:

Line-by-Line Profiling

▪ We’ve installed the

line_profiler library.

▪ To use with kernprof, a

command line tool:

▪ Decorate functions with

@profile

▪ Do this for each function in

row_vs_col_orig.py

from line_profiler import profile

@profile

def row_by_row(A,mat):

''' compute mat = A*mat row-by-row '''

...

Run kernprof

kernprof -l –o line.lprof row_vs_col_orig.py

python -m line_profiler line.lprof

Timer unit: 1e-06 s

Total time: 0.204861 s

File: row_vs_col_orig.py

Function: row_by_row at line 32

Line # Hits Time Per Hit % Time Line Contents

==

 32 @profile

 33 def row_by_row(A,x):

 34 ''' compute x = A*x row-by-row '''

 35 1 5.0 5.0 0.0 rows = x.shape[0]

 36 10001 5605.0 0.6 2.7 for i in range(rows):

 37 10000 199251.0 19.9 97.3 x[i,:] = x[i,:] * A

 38 1 0.0 0.0 0.0 return x

line_profiler from within

Spyder

▪ Manually add the profiling to your script,

run as usual.

▪ Older versions of Spyder (version 4) had

a plug-in that loaded line_profiler results

into the Spyder GUI. This does not exist

for Spyder v5.

import line_profiler

profile = line_profiler.LineProfiler()

function definitions here...

Select the functions

profile.add_function(func_a)

profile.add_function(func_b)

profile.enable()

run the rest of your program

as usual...

Turn off profiling, print the results.

profile.disable()

Print the results

profile.print_stats()

line_profiler from within

Jupyter with %lprun

▪ Option 1: Manually add to your

script as in the previous slide.

▪ Option 2: Load the line-by-line

profiler in your notebook and

profile functions.

▪ %lprun is the line-by-line profiler

def my_func(a,b,c):

…python code…

def looping(N,a,b,c):

for i in range(N):

my_func(a,b,c)

%load_ext line_profiler

N = 100

a = b = c = 1.0

profile my_func as it gets

called by looping(). The

@profile decorator is not

needed.

%lprun –f my_func looping(N,a,b,c)

line profiler output prints...

Memory Usage Profiling

▪ The memory_profiler library

is used in a similar fashion.

▪ To use:

▪ Decorate functions with

@profile

▪ Run the script with the

memory_profiler library.

▪ The output is printed to the

screen.

@profile

def row_by_row(A,mat):

''' compute mat = A*mat row-by-row '''

...

python -m memory_profiler row_vs_col_orig.py

More ways to run…

▪ Import the library and

decorate functions

▪ Jupyter

▪ Load the memory profiler

▪ Use %memit to get the peak

memory used by a function

call.

▪ Separate notebook files can be profiled

with %mprun

▪ See this web page for details.

import memory_profiler as mp

@mp.profile

def some_func(x,y,z):

time.sleep((x+y+z)/3)

Run as usual

https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html

▪ Set mat_size = 10000. Output of: python -m memory_profiler row_vs_col_orig.py

Filename: row_vs_col_orig.py

Line # Mem usage Increment Line Contents

==

 40 808.535 MiB 808.535 MiB @profile

 41 def col_by_col(A,mat):

 42 ''' compute mat = A*mat col_by_col '''

 43 808.535 MiB 0.000 MiB cols = mat.shape[1]

 44 808.535 MiB 0.000 MiB for i in range(cols):

 45 808.535 MiB 0.000 MiB mat[:,i] = A * mat[:,i]

 46 808.535 MiB 0.000 MiB return x

Filename: row_vs_col_orig.py

Line # Mem usage Increment Line Contents

==

 48 808.535 MiB 808.535 MiB @profile

 49 def built_in(A,mat):

 50 ''' A*mat using built-in element-by-element'''

 51 1571.477 MiB 762.941 MiB return A * mat

Whoa!

2x memory usage…?

▪ This function is calculating the

correct quantity.

▪ The syntax creates a new

numpy array to hold the result

which is returned.

▪ This is an in-place calculation:

def built_in(A,mat):

return A * mat

mat = built_in(scaling_value, mat)

def row_by_row(A,mat):

rows = mat.shape[0]

for i in range(rows):

mat[i,:] = A * mat[i,:]

return x

Fix and re-profile the results.

▪ Using the profiling in Spyder:

def built_in(A,mat):

mat[:] = A * mat

return mat

Function Time (msec)

row_by_row 183.57

col_by_col 2870.05

built_in (original version) 576.27

built_in (in-place version) 764.87

Line # Mem usage Increment Line Contents

==

 46 808.543 MiB 808.543 MiB @profile

 47 def built_in(A,mat):

 48 808.543 MiB 0.000 MiB mat[:] = A * mat

 49 808.543 MiB 0.000 MiB return mat

▪ Memory usage is

down:

Interesting! More

memory usage is

faster…

Other Profiling Tools

▪ So far we’ve used:

▪ Python’s built-in profiler

▪ line_profiler

▪ memory_profiler

▪ Here are three more to

consider:

▪ Intel Vtune Profiler

▪ Intel Advisor

▪ Scalene

Intel Vtune Amplifier

▪ A comprehensive tool from Intel that can

analyze Python scripts and the libraries

they call for:

▪ Function call times

▪ “hotspots” – lines of code that consume

excess time

▪ Memory allocations

▪ CPU and memory utilitization

▪ Check out their tutorials and

documentation.

▪ Available in the intel/2024.0 module

module load intel/2024.0

vtune-gui &

▪ Also see the Intel Advisor: advisor-gui &

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/introduction/tutorials-and-samples.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html#gs.16u03w

Scalene

▪ A new profiling tool from UMass

Amherst.

▪ Easy to install (for Linux,

Windows, and Mac):

▪ pip install scalene

▪ Performs CPU, GPU, and

memory profiling.
▪ The report is in HTML format and is displayed

in a web browser.

▪ This can be called from within Jupyter

notebooks as well as from a command line.

https://github.com/plasma-umass/scalene
https://github.com/plasma-umass/scalene
https://github.com/plasma-umass/scalene

Profiling process

▪ Start with function-level

profiling:

▪ Spyder profiling

▪ cProfile with kcachegrind or

snakeviz

▪ Identify problem functions.

▪ LEARN THE TOOLS.

▪ Read the docs!

▪ Line profiler is slower than

function timing so use where

needed.

▪ Use memory profiling when it

seems necessary.

▪ Excess memory usage

▪ Performance issues not easily solved

with other methods.

Algorithm example

▪ Sometimes we have code

that is written poorly.

▪ Profiling tells us where the

problems are but we still

need to find solutions.

▪ Let’s look at an example and

see if you can identify areas

of poor performance:

bixi_slow.py

Outline

▪ Introduction

▪ Profiling

▪ Data Structures

▪ Generators

▪ Accelerators

▪ Syntax

Data Structures

▪ Algorithm implementation and

performance is highly dependent

on underlying data structures.

▪ Wikipedia has a long list of

established data structures.

▪ Find Python implementations at

https://pypi.org

▪ Python data structures:

▪ List

▪ Dictionary

▪ Aka “associative array”

▪ Sets

▪ Tuples

▪ These are sufficient to underpin a

vast variety of algorithms.

▪ For manipulating numeric data

use Numpy ndarrays or Pandas

Dataframes.

https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://pypi.org/project/memory-profiler/

Python data structures are fast when used for:

▪ Lists:

▪ Appending

▪ Element getting/setting

▪ Removing from the end “pop()”

▪ Get length

▪ Tuples (fixed lists):

▪ Element getting

▪ Get length

▪ Dictionaries:

▪ Element getting/setting

▪ Element membership

▪ Element insertion

▪ Sets:

▪ Element membership

▪ Set operations (unions,

intersections, etc)

Let’s compare…

▪ Sample data: names of finishers

of the 2015 and 2017 Boston

Marathons

▪ Open files marathon_list.py and

marathon_set.py

▪ Question: Who finished both the

2015 and 2017 marathons?

▪ Two implementations:

▪ marathon_list.py loads the data

into a pair of lists and then

loops through them.

▪ marathon_set.py loads the

data into a pair of sets and

intersects them.

Data source: https://www.kaggle.com/rojour/boston-results/data

https://www.kaggle.com/rojour/boston-results/data

Performance

▪ Test each script using the

Spyder profiler.

▪ Run it more than once –

sometimes library or other

code loading gives false

timing.

▪ What did you find?

▪ Which one is faster?

▪ Are the results the same?

Lists

▪ The list lookup is ~6300x slower than

the set intersection!

▪ Algorithm: For each element in list A

check to see if it’s in list B.

▪ On average you need len(B)/2

comparisons for every element in A.

▪ That’s approx. len(A) * len(B)/2

operations. Each comparison is pretty

fast.

▪ For 26000 runners that’s ~350M string

comparisons.

x

x

A B

Sets

▪ Sets use a special data structure called a hash

table to store elements.

▪ Also used for dictionary keys.

▪ The underlying hash function is very fast.

▪ Lookup speed is nearly constant regardless of the

size of the set.

▪ Algorithm: For each element in set A

check to see if it’s in set B.

▪ You need len(A) lookups into B. Each

lookup in B takes a constant time .

▪ That’s len(A) operations of time 

▪ For 26000 runners there are 26000 hash

comparisons.

▪ How do you choose?

▪ Test your code on different problem sizes.

▪ Profile your code if testing reveals problems.

▪ Read the documentation for available tools and libraries.

▪ Email RCS for help.

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table

Understand your data

▪ Why were the results different?

▪ Sets only store unique values so

some names got dropped.

▪ A better set solution would use a

combination of factors to be more

robust.

▪ Example store this in the set as a tuple:

(name, city, country, gender)

Graphs

▪ Some data is naturally

understood as a graph.
▪ A graph of people and their social

connections to other people.

▪ Contact tracing during a pandemic.

▪ Journal articles and their authors.

▪ Python libraries: networkx,

igraph, graph-tool
▪ Networkx is pure Python – it

builds its graphs on a “dictionary

of dictionaries of dictionaries”

▪ igraph is in C and C++.

▪ graph-tool is in C++.

https://networkx.org/documentation/latest/
https://igraph.org/
https://graph-tool.skewed.de/static/doc/index.html

Numpy and Pandas

▪ Numpy ndarrays are

intended for high speed

numeric calculations.

▪ Pandas dataframes are

composed of ndarrays –

similar pros & cons

▪ Use built-in numpy functions

wherever possible

▪ If x is an ndarray…

▪ numpy.abs(x) can operate on a

whole ndarray.

▪ math.abs(x) requires a Python

loop

▪ Choose appropriate data types:

float32, int, etc.

▪ Pre-allocate ndarrays to the correct

size.

▪ Overwrite values with left-hand slice

notation.

Optimal usage:

Pandas

▪ Read the Pandas docs that

give performance tips.

▪ Also – docs on scaling

Pandas to large data sets.

▪ Want to use multiple cores?

▪ Have really big data sets to

process?

▪ Or both?

▪ Check out Dask and its

DataFrame implementation.

https://pandas.pydata.org/docs/user_guide/enhancingperf.html
https://pandas.pydata.org/docs/user_guide/scale.html
https://pandas.pydata.org/docs/user_guide/scale.html
https://www.dask.org/

Avoid numpy.append()!

▪ This also applies to
pandas.Dataframe.append()

▪ numpy.append() for an ndarray

with N elements:
▪ Allocate a new ndarray of size N+1

▪ Copy over the existing data

▪ Copy in the new element.

▪ Deallocate the old ndarray of N elements.

1 1 1 1x=numpy.ones(4)

x=numpy.append(x,2)

x

new

copy:

1 1 1 1

1 1 1 1

copy: 1 1 1 1 2

x 1 1 1 1 2

1 1 1 1delete

Some Numpy examples

▪ Open numpy_solutions.py

▪ Examples are provided for append(), pre-allocation, and

proper use of library calls.

Outline

▪ Introduction

▪ Profiling

▪ Data Structures

▪ Generators

▪ Accelerators

▪ Syntax

Generators

▪ A Python generator is a function that behaves like an iterator.

▪ An iterator returns every element of a collection.
▪ Example: a for loop iterates over the elements of a Python list.

▪ Generators can be used to create sequences of values one value at a

time.

range()

▪ The range() function in Python is a generator.

▪ Try: print(range(4))

▪ It won’t print out any numbers – the output is not a list.

▪ range() returns a generator that can be iterated over to produce a sequence of integers.

for x in range(1,4):

print(x)

Output:

1

2

3

List comprehensions as generators

▪ List comprehensions are handy ways to

create and manipulate lists.

▪ Intermediate lists or ones that are

created and discarded still need to

allocate memory.

▪ Generator syntax: use () instead of []

▪ No lists are created…little additional

memory.

strs = ['call','me','ishmael']

uppercase all the strings

caps = [L.upper() for L in strs]

Print them out

for c in caps:

print(caps)

gcaps = (L.upper() for L in strs)

for g in gcaps:

print(g)

Let’s visualize this!

https://pythontutor.com/render.html#code=strs%20%3D%20%5B'call','me','ishmael'%5D%0A%0A%23%20uppercase%20all%20the%20strings%0Acaps%20%3D%20%5BL.upper%28%29%20for%20L%20in%20strs%5D%0A%0A%23%20Print%20them%20out%0Afor%20c%20in%20caps%3A%0A%20%20%20%20print%28c%29%0A%20%20%20%20%0A%0Agcaps%20%3D%20%28L.upper%28%29%20for%20L%20in%20strs%29%0Afor%20g%20in%20gcaps%3A%0A%20%20%20%20print%28g%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false

Generator Functions

▪ A generator function is written with
the yield keyword.

▪ It will generate values until it reaches
a return statement or throws a

StopIteration exception.

▪ Every yield will return a value but

the function keeps running until it

returns.

import random

def triple_ran(N):

''' Return N tuples of 3

random numbers.'''

for i in range(N):

vals=(random.random(),

random.random(),

random.random())

yield vals

return # optional

for triplet in triple_ran(4):

print('%1.3f %1.3f %1.3f' % triplet)

0.070 0.363 0.821

0.668 0.705 0.235

0.384 0.817 0.071

0.633 0.303 0.591

Visualize!

https://pythontutor.com/render.html#code=import%20random%0A%23%20best%20practice%20is%20to%20use%20numpy.random.default_rng%28%29%0A%23%20but%20this%20website%20doesn't%20support%20numpy.%0A%0Adef%20triple_ran%28N%29%3A%0A%20%20%20%20'''%20Return%20N%20tuples%20of%203%0A%20%20%20%20%20%20%20%20random%20numbers.'''%0A%20%20%20%20for%20i%20in%20range%28N%29%3A%0A%20%20%20%20%20%20%20%20vals%3D%28random.random%28%29,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20random.random%28%29,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20random.random%28%29%29%0A%20%20%20%20%20%20%20%20yield%20vals%20%0A%20%20%20%20return%20%23%20optional%20%0A%0Afor%20triplet%20in%20triple_ran%284%29%3A%0A%20%20%20%20print%28'%251.3f%20%251.3f%20%251.3f'%20%25%20%20triplet%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false

Outline

▪ Introduction

▪ Profiling

▪ Data Structures

▪ Generators

▪ Accelerators

▪ Syntax

numba

▪ The numba library can translate portions of your Python code and compile

it into machine code on demand.

▪ Achieves a significant speedup compared with regular Python.

▪ Compatible with numpy ndarrays and a growing number of Python

datatypes.

▪ Can generate code to execute automatically on GPUs.

http://numba.pydata.org/

numba

▪ The @njit decorator is used to

indicate which functions are

compiled.

▪ Options:
▪ GPU code generation

▪ Parallelization

▪ Caching of compiled code

▪ Can produce faster array code

than pure NumPy statements.

from numba import njit

This will get compiled when it’s

FIRST EXECUTED. The result will be

cached for re-use.

@njit(cache=True)

def average(x, y, z):

return (x + y + z) / 3.0

With type information this one gets

compiled when the file is READ.

@njit (float64(float64,float64,float64))

def average_eager(x, y, z):

return (x + y + z) / 3.0

▪ A snippet of code from a program processing ~5B rows of data.

▪ The data was processed via chunks of 100M rows into Pandas

dataframes.

▪ Profiling showed that this weight calculation was a bottleneck. Sped

up with numba and 4 threads.

import numpy as np

import numba

@numba.njit(cache=True, fastmath=True, parallel=True)

def modify_weights(w):

''' w: numpy array of the weights

returns: new numpy array '''

\ is the Python "line continuation"

return -np.log(np.exp(-11.13 + 0.366 * w) / \

(1 + np.exp(-11.13 + 0.366 * w)))

...later in the code process a column in a

Pandas dataframe and replace it with the

modified value.

numba.set_num_threads() was called earlier

to enable parallel computation.

df['weight'] = modify_weights(df['weight'].to_numpy(dtype=np.float32))

A numba example

Open mandelbrot.py

numexpr

▪ Another acceleration library for

Python.
▪ This one seems to be waning in popularity

▪ Useful for speeding up specific

ndarray expressions.
▪ Typically 2-4x faster than plain NumPy

▪ Code needs to be edited to move

ndarray expressions into the
numexpr.evaluate() function:

import numpy as np

import numexpr as ne

a = np.arange(10)

b = np.arange(0, 20, 2)

Plain NumPy

c = 2 * a + 3 * b

Numexpr

d = ne.evaluate("2*a+3*b")

https://github.com/pydata/numexpr

f2py

▪ Fortran code can be lightly modified and re-compiled

into Python compatible functions.

▪ High performance routines are relatively easy to code in

Fortran 95/2003.

▪ f2py is part of the numpy library.

▪ Compiled Fortran code can be >100x faster than

equivalent Python code.

https://numpy.org/doc/stable/f2py/

Rapids.ai

▪ “GPU Accelerated Data Science”

▪ Provides a number of libraries that execute on the GPU

▪ These are
▪ Pandas → cudf

▪ scipy, numpy → cupy

▪ scikit-learn → cuml

▪ Dask → dask-cuda

▪ networkx → cugraph

▪ And lots more

▪ Easiest install on the SCC:
▪ Use a conda env

https://rapids.ai/
https://github.com/rapidsai
https://docs.rapids.ai/install?_gl=1*jynlww*_ga*NzUwMDUzMjMxLjE3MTg3MjUxMjI.*_ga_RKXFW6CM42*MTcxODcyNTEyMS4xLjEuMTcxODcyNTM1OC40MS4wLjA.#selector

Intel Distribution for Python

▪ Intel has a customized distribution of Python for Linux and Windows.

▪ Quote:

▪ Here’s an example of using the Data Parallel Extension for Numpy for auto-parallelizing

Numpy code.

• Scalable performance using all available CPU cores on laptops, desktops, and powerful

servers

• Support for the latest CPU instructions

• Near-native performance through acceleration of core numerical and machine learning

packages with libraries like the Intel® oneAPI Math Kernel Library (oneMKL) and Intel®

oneAPI Data Analytics Library

• Productivity tools for compiling Python code into optimized instructions

• Essential Python bindings for easing integration of Intel native tools with your Python project

https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-for-python.html#gs.mdbqvz
https://intelpython.github.io/dpnp/quick_start_guide.html#examples

PyPy

▪ PyPy is an alternate

implementation of the Python

interpreter.

▪ It is mostly compatible with

Python libraries
▪ Popular libraries (numpy, pandas) will

work

▪ For Python code PyPy is ~3x

faster than regular Python.

▪ If you have a program where most of the work occurs in

custom Python code (not external libraries) this is worth

trying!

https://pypy.org/

Outline

▪ Introduction

▪ Profiling

▪ Data Structures

▪ Generators

▪ Accelerators

▪ Syntax

Python Syntax

▪ Here are some common ways where Python syntax can result in

unintended consequences.

String concatenation

▪ Avoid excessive use of ‘+’ as each ‘+’

creates a temporary string.

▪ Very time and memory-intensive in loops.

▪ If strings are in a list (or similar thing) use

the string join() function.

▪ Building a string in a loop? Append them

to a list then join().

a list of some strings

strs = ['a','b','c',...]

s = ""

for i in strs:

s += i

strs = ['a','b','c',...]

s = "".join(strs)

Best to avoid this

Less code, faster, and less memory.

msg = []

for idx,elem in enumerate(some_data):

doing something...

record a message/result/etc

msg.append('Step %s complete\n' % idx)

Now concatenate

msg = ''.join(msg)

Slice Notation

▪ Lists:

▪ RHS list slicing copies lists

▪ LHS list slicing overwrites elements

▪ Numpy ndarrays:

▪ RHS ndarray slicing creates a Numpy

view

▪ LHS ndarray slicing overwrites elements

x = [1,2,3,4]

y is a new list

y = x[0:2]

y --> [1,2]

x[0:2] = [-5,-6]

1st two elements

of x are overwritten

x --> [-5,-6,3,4]

x = numpy.array([1,2,3,4])

y is a view into x

y = x[0:2]

y --> x0:2] --> [1,2]

x[0:2] = [-5,-6]

1st two elements

of x are overwritten

x --> [-5,-6,3,4]

y --> x[0:2] --> [-5,-6]

The del command

▪ Temporary variables in loops – avoid
the del command to clear out lists.

▪ The del works by marking the elements of

list x for deletion at some later time, not

when the del is called.

▪ The cleared elements of x aren’t cleaned

up until x goes out of scope.

▪ This can result in a surprising amount of

memory consumption!

▪ Instead re-declare x with each inner

loop iteration.

x=[]

sum = 0.0

for i in range(N):

for j in range(M):

do something that

adds stuff to x

sum += sum(x)

clear out x

del x[:]

sum = 0.0

for i in range(N):

x = []

for j in range(M):

do something that

adds stuff to x

sum += sum(x)

No.

Yes.

Open files with with

▪ The Python with command when

opening files will auto-handle the

closing of the file.

▪ The operating system limits the

number of files that can be

opened…it’s easy to forget a file

.close() call.

import glob

import os

files = glob.glob(os.path.join(img_dir,'*.dat'))

Do something with each data file

for datfile in files:

dat=open(datfile,'r')

some_func(dat.read())

If there are enough files and you

don't call this:

dat.close()

this loop WILL CRASH when you hit

your open file limit.

Life is better with "with" :

for datfile in files:

with open(datfile,'r') as dat:

some_func(dat.read())

this guarantees the open file is

closed when this code block ends

dat.close() ## this is now optional.

Python’s itertools and functools libraries

▪ These two libraries are full of highly useful tools for manipulating Python

functions and data structures.

▪ Well worth checking out!

▪ functools:
▪ “The functools module is for higher-order functions:

functions that act on or return other functions. In

general, any callable object can be treated as a

function for the purposes of this module.”

▪ itertools:
▪ “The module standardizes a core set of fast, memory

efficient tools that are useful by themselves or in

combination. Together, they form an “iterator algebra”

making it possible to construct specialized tools

succinctly and efficiently in pure Python.”

https://docs.python.org/3.6/library/itertools.html
https://docs.python.org/3.6/library/functools.html

End-of-course Evaluation Form

▪ Please visit this page and fill in the evaluation form for this course.

▪ Your feedback is highly valuable to the RCS team for the improvement

and development of tutorials.

▪ If you visit this link later please make sure to select the correct tutorial –

name, time, and location.

http://scv.bu.edu/survey/tutorial_evaluation.html

http://scv.bu.edu/survey/tutorial_evaluation.html

	Slide 1: Python Optimization
	Slide 2: Run Spyder
	Slide 3: Outline
	Slide 4: Optimization
	Slide 5: Why Bother to Optimize?
	Slide 6: Some words of wisdom, lightly paraphrased
	Slide 7: Outline
	Slide 8: Profiling
	Slide 9: Profiling Drawbacks
	Slide 10: Python Profiling Tools
	Slide 11: Additional Profiling Tools
	Slide 12: A simple sample code
	Slide 13: Profiling: manual timing
	Slide 14: Function Decorators
	Slide 15: Better Manual Profiling
	Slide 16: Spyder Timing
	Slide 17: Spyder Timing
	Slide 18: Profiling: Using the Python Profiler
	Slide 19: Spyder Profiling Output
	Slide 20: Timing and Profiling in a Jupyter Notebook
	Slide 21: Command Line Python Profiling
	Slide 22: Python Profiling Tools
	Slide 23: kcachegrind
	Slide 24: snakeviz
	Slide 25: Line-by-Line Profiling
	Slide 26: Run kernprof
	Slide 27: line_profiler from within Spyder
	Slide 28: line_profiler from within Jupyter with %lprun
	Slide 29: Memory Usage Profiling
	Slide 30: More ways to run…
	Slide 31
	Slide 32: 2x memory usage…?
	Slide 33: Fix and re-profile the results.
	Slide 34: Other Profiling Tools
	Slide 35: Intel Vtune Amplifier
	Slide 36: Scalene
	Slide 37: Profiling process
	Slide 38: Algorithm example
	Slide 39: Outline
	Slide 40: Data Structures
	Slide 41: Python data structures are fast when used for:
	Slide 42: Let’s compare…
	Slide 43: Performance
	Slide 44: Lists
	Slide 45: Sets
	Slide 46: Understand your data
	Slide 47: Graphs
	Slide 48: Numpy and Pandas
	Slide 49: Pandas
	Slide 50: Avoid numpy.append()!
	Slide 51: Some Numpy examples
	Slide 52: Outline
	Slide 53: Generators
	Slide 54: range()
	Slide 55: List comprehensions as generators
	Slide 56: Generator Functions
	Slide 57: Outline
	Slide 58: numba
	Slide 59: numba
	Slide 60
	Slide 61: A numba example
	Slide 62: numexpr
	Slide 63: f2py
	Slide 64: Rapids.ai
	Slide 65: Intel Distribution for Python
	Slide 66: PyPy
	Slide 67: Outline
	Slide 68: Python Syntax
	Slide 69: String concatenation
	Slide 70: Slice Notation
	Slide 71: The del command
	Slide 72: Open files with with
	Slide 73: Python’s itertools and functools libraries
	Slide 74: End-of-course Evaluation Form

