Shaohao Chen

Research Computing @ Boston University

s=a*x+y

adds a scalar multiple of a real vector to another real vector.

inti;

for (i=0;i<n;i++){

y[i] = a*x[i] + y[il;
}

Exercise 2: Matrix Multiplicatoin

= C

mn

e Matrix element

Notes: 1. The three matrices are shared data, meaning that all threads can read and write them.

2. Distribute the works of the most outer loop to minimize overheads.

for (i=0; i< nra; i++){

for (j = 0; j < ncb; j++){

sum = 0.0;
for (k = 0; k < nca; k++){

sum = sum + a[i][k] * b[k][j1;
}

cli][j] = sum;

Exercise 3: Laplacian solver

* Two-dimensional Laplace equation: |72f(x, y) =0

* Discretize the laplacian with first-order differential method and express the solution as

Ai—L D +AG+1,) +AG - D) +A3Gj+1)
4

Ak+1(i!j) =

* The solution on one point only depends on ¢
the four neighbor points:

AGi-1,j) | A AG1,)

* Jacobi iterative algorithm:
1. Give a trial solution A depending on a provided initial condition.

2. Calculate the new value for every element of the solution, that is A_new(i,j),
based on the old values of the four neighbor points.

3. Update the solution, i.e. A=A _new,
4. lterate steps 2 and 3 until converged, i.e. max(| A_new(i,j)-A(i,j) |)<tolerance.

5. Finally the converged solution is stored at A.

* Use Jacobi iterative algorithm to solve Laplace equation.

int iter =0;
while (error > tol && iter < iter_max) { // iterate until converged

error = 0.0;

for(j=1;j<n-1;j++) for(i=1;i<m-1;i++){

Anewl(j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + A[j-1][i] + A[j+1][i]); //calculate new value from neighbors

error = fmax(error, fabs(Anew(j][i] - A[jl[i])); // calculate the maximum error

for(j=1;j<n-1; j++) for(i=1;i<m-1;i++){
A[jlli]1 = Anewl[j][i]; // Update the solution
}

iter++;

e (Calculate pi with integration method
1
4.0
dr =
|,

 Numerically, we can approximate the value of pi as
the sum of a number of rectangles.

rrl\-l"h
3
+
F
o
=
<

F(x)

N
F(x;))Ax =~ 7
=0

(]

Notes: Use reduction clause to avoid a data racing condition.

for(i=0;i<n;i++){

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);
}

Calculate a=B*c, where a is an m dimension vector, c is an n dimension
vector and B is an m*n dimension matrix.

doi=1,m
a(i) = b(i,1)*c(1)
doj=2,n

a(i) = a(i) + b(i,j)*c(j)
end do

end do

doi=1,m
a(i) = b(i,1)*c(1)
doj=2,n

a(i) = a(i) + b(i,j)*c(j)
end do

end do

(version 1)

(version 2, only for Fortran)

a(l:m)=>b(1:m,1)*c(1)

doj=2,n
doi=1,m
a(i) = a(i) + b(i,j)*c(j)
end do

end do

