
Exercises for OpenMP

Shaohao Chen

Research Computing @ Boston University

Exercise 1: SAXPY

• SAXPY: s = a*x + y

adds a scalar multiple of a real vector to another real vector.

int i;

#pragma omp parallel for private(i)

for (i = 0; i < n; i++){

y[i] = a*x[i] + y[i];

}

• Use OpenMP to parallelize the SAXPY codes.

Exercise 2: Matrix Multiplicatoin

• Matrix element

• Use OpenMP to parallelize the matrix-multiplication codes.

Notes: 1. The three matrices are shared data, meaning that all threads can read and write them.

2. Distribute the works of the most outer loop to minimize overheads.

#pragma omp parallel for shared(nra,ncb,nca) private(sum,i,j,k)

for (i = 0; i < nra; i++){

for (j = 0; j < ncb; j++){

sum = 0.0;

for (k = 0; k < nca; k++){

sum = sum + a[i][k] * b[k][j];

}

c[i][j] = sum;

}

}

Exercise 3: Laplacian solver

• Two-dimensional Laplace equation:

• Discretize the laplacian with first-order differential method and express the solution as

• The solution on one point only depends on
the four neighbor points:

• Jacobi iterative algorithm:

1. Give a trial solution A depending on a provided initial condition.

2. Calculate the new value for every element of the solution, that is A_new(i,j),
based on the old values of the four neighbor points.

3. Update the solution, i.e. A=A_new,

4. Iterate steps 2 and 3 until converged, i.e. max(| A_new(i,j)-A(i,j)|)<tolerance.

5. Finally the converged solution is stored at A.

• Use Jacobi iterative algorithm to solve Laplace equation.

• Use OpenMP to parallelize the program for Laplacian solver.

int iter = 0;

while (error > tol && iter < iter_max) { // iterate until converged

error = 0.0;

#pragma omp parallel for shared(m, n, Anew, A) private(i,j)

for(j = 1; j < n-1; j++) for(i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + A[j-1][i] + A[j+1][i]); //calculate new value from neighbors

error = fmax(error, fabs(Anew[j][i] - A[j][i])); // calculate the maximum error

}

#pragma omp parallel for shared(m, n, Anew, A) private(i,j)

for(j = 1; j < n-1; j++) for(i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i]; // Update the solution

}

iter++;

}

Exercise 4: Calculate the value of Pi

• Calculate pi with integration method

• Numerically, we can approximate the value of pi as
the sum of a number of rectangles.

• Use OpenMP to parallelize the program for calculating pi.

Notes: Use reduction clause to avoid a data racing condition.

#pragma omp parallel for default(shared) private(i,x) reduction(+:sum)

{

for (i = 0; i < n; i++) {

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

}

Exercise 5: Matrix-vector multiplication (in Fortran)

do i = 1, m

a(i) = b(i,1)*c(1)

do j = 2, n

a(i) = a(i) + b(i,j)*c(j)

end do

end do

• Serial Fortran code

• Calculate a=B*c, where a is an m dimension vector, c is an n dimension
vector and B is an m*n dimension matrix.

• Use OpenMP to parallelize the code for matrix-vector multiplication (version 1)

!$OMP PARALLEL DO DEFAULT(shared) PRIVATE(i,j)

do i = 1, m

a(i) = b(i,1)*c(1)

do j = 2, n

a(i) = a(i) + b(i,j)*c(j)

end do

end do

!$OMP END PARALLEL DO

• Use OpenMP to parallelize the code for matrix-vector multiplication
(version 2, only for Fortran)

!$OMP PARALLEL DEFAULT(shared) PRIVATE(i,j)

!$OMP WORKSHARE

a(1:m) = b(1:m,1)*c(1)

!$OMP END WORKSHARE

!$OMP DO REDUCTION(+:a)

do j = 2, n

do i = 1, m

a(i) = a(i) + b(i,j)*c(j)

end do

end do

!$OMP END DO

!$OMP END PARALLEL

