
BS803 Introduction to SQL

Fall 2022

Brian Gregor

bgregor@bu.edu

Research Computing Services

rcs.bu.edu

mailto:bgregor@bu.edu

Outline

▪ Set up your computer for using SQL

▪ Relational Database concepts

▪ SAS & SQL

▪ Basic SQL queries

▪ Normalization

▪ SQL Joins

▪ Multi-step queries

Setup for SQL

▪ Visit DB Browser.

▪ Download the Mac or Windows installer & install it.

▪ Get the database:

▪ http://rcs.bu.edu/examples/db/tutorials/bs803/data.zip

▪ Unpack that ZIP file somewhere on your computer

▪ Windows users: right-click the file, choose Extract All

▪ The data is the Zillow Home Value Index for US cities from 2000-2022.

On the SCC a similar

program is available via a

module:

sqlitebrowser/3.10.1

https://sqlitebrowser.org/
http://rcs.bu.edu/examples/db/tutorials/bs803/data.zip
https://www.zillow.com/research/data/

Relational Databases

▪ From the Oxford English Dictionary:

“A structured set of data held in computer storage and typically accessed or

manipulated by means of specialized software.”

▪ This is distinct from an application (i.e. your SAS, R, or Python program)

reading, storing, and manipulating data from a stored dataset.

Parts of “the database”

Stored Data
(on disk, in memory)

Software managing
the data

Computer running
the DBMS

database

Database server

Database management

software (DBMS)

Database system

The common term “the database” usually

refers to the combo of a DBMS + database.

Stored Data

▪ Data in a database can be stored in any number

of ways with varying degrees of sophistication.

▪ Usually, it’s in a format specific to the DBMS
(our focus for today)

▪ But it could also be:
▪ A single (giant) text file

▪ A collection of Excel spreadsheets

▪ Directories and subdirectories of image files or other data files

▪ Etc.

We could have a database that

provides sorting and ordering for a

dataset that consists of these types

of data.

E.g. Excel Power Query

Database Management Software

▪ The DBMS provides functionality to manage, retrieve, and store data in

the database.

▪ Most provide multi-user access to a database over networks.

▪ A single DBMS program can typically handle multiple databases
▪ And serve them to different groups of users or applications

▪ Example: a single DBMS hosts databases for engineering, sales, and customer info

Database Management Software

▪ The storage, creation, and management of the database is

handled by the DBMS

Dataset
(text, Excel, etc)

Create & define a
database

Import Data

DBMS

database

Connect to the DBMS
from SAS, R, Excel, etc. to

query the database

Database Servers

▪ A single application:
▪ Use a DBMS via a software library to handle data storage & retrieval from a database.

▪ Separate DBMS for an application:
▪ A computer runs a DBMS to provide data for a web server on the computer.

▪ Dedicated hardware:
▪ Large scale datasets or large numbers of users need a computer (or cluster) dedicated to the

DBMS while the applications run elsewhere.

When to use a database…

▪ You have more data than your application can conveniently access
▪ E.g. the dataset is larger than the amount of RAM on your computer.

▪ You need to search through your data
▪ Especially when the searches are complex

▪ Or involve internal relationships between parts of your dataset

▪ You want your data storage to be reliable and fault-tolerant.
▪ If your DBMS is properly ACID compliant it is very hard to corrupt its data storage or store

invalid or incomplete data sets.

https://en.wikipedia.org/wiki/ACID_(computer_science)

When to use a database…

▪ You have more data than your application can conveniently access

▪ The data is well-structured
▪ E.g. timestamped, clear types – users, items, images, etc., internal relationships between

datasets

▪ Your application needs to scale up to handle large quantities of data

▪ You need to search through your data
▪ Especially when the searches are complex

▪ Or involve internal relationships

▪ You want your data storage to be reliable and fault-tolerant.
▪ If your DBMS is properly ACID compliant it is very hard to corrupt its data storage or store

invalid or incomplete data sets.

https://en.wikipedia.org/wiki/ACID_(computer_science)

Structured Query Language (SQL)
▪ A programming language that is executed by a RDBMS to perform queries

▪ SQL statements can read, insert, or delete data from the database, create or delete tables, manage user

accounts for the database, store queries to run as functions, and more.

▪ The queries define where to search (which tables, etc.) and what to return

▪ Queries do not define how to do the search – the algorithms depend on the RDBMS

implementation

▪ Query results can be data from the database or derived values created during the query.

▪ SQL as a language standard is mostly adhered to by DBMS vendors.
▪ ~90% compatible across different SQL systems.

Popular SQL RDBMS systems

Name Max database size Multi-User Open Source? Server/Client? OS Platforms*

SQLite
140 TB

read only yes No All of them!

(incl. iOS, Android)

PostGreSQL 151 ExaBytes

(151x106 TB)

read / write yes yes Windows, Linux,

Mac OSX

MySQL Default is 256 TB,

max 65,536 TB

read / write yes yes Windows, Linux,

Mac OSX

Microsoft SQL

Server
(free) 10 GB

($) 524,272 TB

read / write no yes Windows, Linux

Oracle DB
(free)11 GB to “how

big is your wallet?”

read / write no yes Windows, Linux,

other Unix

* To run the DBMS. Client access can be from any platform.

A Relational Database Example

Id Instructor

1 Sejin

2 Hobeom

Id Student

1 Jin

2 Suga

3 J-Hope

4 RM

Id Course

1 Quantum Field Theory I

2 Symmetry in Condensed Matter Physics

Id Department

1 Physics

2 Mathematics

One-to-One

Many-to-Many

Many-to-One

Tables and their

relationships are defined

in a database schema

SAS & SQL

▪ SAS has SQL built in. You can use it to query SAS datasets.
▪ It’s a subset of the SQL language, limited to SELECT statements which perform queries.

▪ See their docs for info on how to use this.

▪ SAS can also be connected to external SQL databases using the

SAS/ACCESS add-on.

proc sql;

select BookingDate, ReleaseDate,

ReleaseCode from SASclass.Bookings;

quit;

https://documentation.sas.com/doc/en/pgmsascdc/v_007/sqlproc/n0w2pkrm208upln11i9r4ogwyvow.htm

SQLite

▪ There are some key differences with SQLite vs. other DBMS systems.

▪ Single user (single application), no concept of users, small number of

datatypes, dynamic typing.

What Is SQLite?
SQLite is a C-language library that implements a small, fast, self-
contained, high-reliability, full-featured, SQL database engine.
SQLite is the most used database engine in the world. SQLite is built
into all mobile phones and most computers and comes bundled
inside countless other applications that people use every day.

https://www.sqlite.org/index.html
https://www.sqlite.org/footprint.html
https://www.sqlite.org/fasterthanfs.html
https://www.sqlite.org/selfcontained.html
https://www.sqlite.org/hirely.html
https://www.sqlite.org/fullsql.html
https://www.sqlite.org/mostdeployed.html

Open DB Browser

▪ Click “Open Database”

▪ Choose the

“zillow.sqlite3” file.

▪ DB Browser should now look more or less like this.

The zillow.sqlite3 database

▪ Tables:
▪ orig_data

▪ an import of the CSV file

▪ ne_data

▪ A modification of orig_data with New England data

▪ Counties, Metros, Regions, States, HomeValueIndex

▪ A radical reorganization of the orig_data table.

▪ orig_data: contains columns that specify place (StateName,

RegionName, Metro) and columns named for dates that contain house

price estimates (“Home Value Index”).

SELECT: a read-only query

SELECT columns FROM table_name WHERE condition … ;

Column names from the table

* Means all columns

Only 1 table name

Boolean conditions on

columns that filter the

results.

SQL syntax is indifferent to

capitalization. The

convention is to capitalize

SQL keywords.

Other keywords,

stay tuned.

SQL Comments

▪ Comment your queries:

-- A single line comment

/* This is

a multi-line

comment */

Enter & Run

▪ SELECT State, RegionName FROM ne_data ;

▪ Returns 1428 rows with 2 columns.

▪ SELECT State, RegionName FROM ne_data LIMIT 10;

▪ Stop after 10 rows. This is handy for developing/debugging queries.

▪ SELECT State, RegionName FROM ne_data WHERE State= 'MA' ;

▪ The WHERE condition filters the result to just Massachusetts.

▪ SELECT State, RegionName FROM ne_data

WHERE Jan2010 > 500000 ;

▪ Here filter to home values > $500k.

Poor Naming scheme in orig_data
▪ Most column names in orig_data start with numbers. This confuses SQL.

▪ Try adding single quotes

▪ SQL usually uses single quotes for strings

▪ SELECT State,RegionName FROM orig_data WHERE

'2007-06-30' > 1000000 ;

▪ That’s comparing a string to an integer. Try telling SQL that the string really is part of the

table:

▪ SELECT State,RegionName FROM orig_data WHERE

orig_data.'2007-06-30' > 1000000 ;

Table_name.'column_name’

will clear up ambiguity.

WHERE operators

Operator Description

= Equal

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal (Sometimes != is allowed)

BETWEEN Between a certain range

LIKE Pattern search

IN Multiple options

AND, NOT, OR Apply multiple conditions

Add more clauses with Boolean operators

▪ SELECT State,RegionName, Jan2005, Jan2010

FROM ne_data

WHERE Jan2010 > 500000

AND (State='ME' OR State='NH’);

▪ SELECT State,RegionName, Jan2005, Jan2010

FROM ne_data

WHERE Jan2010 > 500000

AND State IN ('ME','NH’);

Aggregations

▪ We can aggregate results by applying functions to columns:

▪ SELECT State,RegionName, MAX(Jan2010) FROM ne_data ;

▪ Rename with the AS keyword

▪ SELECT State,RegionName, MAX(Jan2010) AS MaxValue FROM

ne_data ;

Or by apply GROUP BY

▪ SELECT Count(*) FROM ne_data WHERE State='MA'

▪ Returns 364, meaning there are 364 rows where the state is Massachusetts.

▪ Now do this for all states:

▪ SELECT State,COUNT(*) FROM ne_data GROUP BY State;

▪ Try to get the state with the largest number of entries in the table…

▪ Treat the SELECT like it’s a table and do a SELECT on it…you can’t nest

an aggregate function inside another like MAX(COUNT(*))

▪ SELECT State, MAX(C) FROM

(SELECT State,COUNT(*) AS C FROM ne_data

GROUP BY State)

SQLite functions

▪ Core functions – string manipulation, basic math, etc.

▪ Aggregate functions – min, max, sum etc.

▪ Math functions – rounding, trig functions, log, etc.

▪ Date/Time – functions dealing with times stored as ISO-8601, Julian

numbers, or seconds since the Unix epoch.

▪ Window functions – input values are taken from some subset of rows as

returned by a SELECT.

https://www.sqlite.org/lang_corefunc.html
https://www.sqlite.org/lang_aggfunc.html#aggfunclist
https://www.sqlite.org/lang_mathfunc.html
https://www.sqlite.org/lang_datefunc.html
https://www.sqlite.org/windowfunctions.html

Average Home Values

▪ Try: What are the average home values by county (CountyName) for

2005 and 2010?

▪ Sort your query in descending order by adding an ORDER BY:

▪ SELECT State,COUNT(*) AS C FROM ne_data GROUP BY

State ORDER BY C DESC;

ORDER BY col ASC

ORDER BY col DESC

Choose a direction, ascending or descending.

Complex queries

▪ Database queries can be very long.

▪ You can create your own tables for convenience with the CREATE

TEMPORARY TABLE command. Temporary tables are removed at the

end of the query.
▪ Create a few temp tables, combine them, select from them to return a final result.

▪ SELECT results can sometimes be assigned to variables.
▪ Depends on the DBMS. SQL Server allows this, for example.

▪ It’s like writing a SAS, R, or Python program…!

UPDATE

▪ To update a value (or row, or set of rows) in a table use the UPDATE

command:

▪ UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

▪ But wait – what happens if an error occurs?
▪ Illegal value entered (string in place of an int, required value not provided, power plug yanked etc)

Transactions

▪ SQL databases support transactions, which are all-or-nothing changes to

the database
▪ Every part of the transaction succeeds or the database is unchanged.

▪ Many times these are enabled automatically by libraries, so queries from

R, Python, or SAS are handled as transactions. DB Browser uses these

in its Execute SQL editor.

BEGIN; --or BEGIN TRANSACTION ;

UPDATE ne_data SET Jan2005=10*Jan2005

WHERE RegionName='Boston’ ;

-- ROLLBACK – cancel this transaction

COMMIT; -- OR END

Normalization

▪ This is the name of the process that reduces redundancy and improves

data integrity in a database.

▪ Let’s look at the orig_data table.

▪ We want to have fixed definitions (like state or county names) to be

specified exactly once in the database.

▪ The date columns are very hard to use, let’s a make a new table that

stores all the date-based home values.

A new schema

▪ Counties – stores the county names

▪ Metros – stores metro (city) names

▪ Regions – store region names

▪ States – store state names and abbreviations

▪ HomeValueIndex – Store all of the home values for all places and dates.

▪ Let’s look at the set of SQL files (and 1 Python file) that implements this

change.
▪ Demonstrates the CREATE TABLE and INSERT commands to define tables and add rows to

them.

Importing Data

▪ A common scenario: you have some dataset (CSV, etc.) that needs to be

added to a normalized database. This process might look like this:

▪ Create a temporary table that mirrors the raw data

▪ Insert the raw data into the temporary table.

▪ Use SELECT, INSERT, and UPDATE and maybe one or more other temporary tables to re-

arrange the raw data into a format that is compatible with the database scheme.

▪ Do an INSERT or UPDATE into the database tables of the raw data.

▪ Query ends, temporary tables are automatically deleted.

Relationships

▪ The FOREIGN KEY is used to create relationships.

▪ 1-to-1 or 1-to-many:
▪ Table A has a FOREIGN KEY that references a rowid or other primary key to table B.

▪ “Real” 1-to-1:
▪ Table A has a FOREIGN KEY that references a rowid or other primary key to table B and vice-

versa.

▪ Many-to-many:
▪ Create a third table C that contains 2 columns: a FOREIGN KEY referencing table A and a

FOREIGN KEY referencing table B. Table C is sometimes called a “jump” table.

▪ Multiple rows in table C create multiple relationships between tables A and B.

Joins

▪ In order to build queries we now need to attach our tables together.

▪ You can rename tables for convenience

SELECT HomeValueIndex.State as StateID, States.State

FROM HomeValueIndex

INNER JOIN States ON HomeValueIndex.State=States.rowid

LIMIT 10 ;

SELECT H.State as StateID, S.State

FROM HomeValueIndex H

INNER JOIN States S ON H.State=S.rowid

LIMIT 10 ;

Join Types

▪ INNER JOIN (or just JOIN): Join

condition is satisfied in both tables.

▪ LEFT JOIN: All matches from the left

table, matched records from the right

or NULL values.

▪ RIGHT JOIN: inverse of a LEFT

JOIN.

▪ FULL OUTER JOIN: returns

everything if there’s a match on either

side.

Diagrams from w3schools.com

https://www.w3schools.com/sql/sql_join.asp

Re-create orig_data

▪ Using many JOINs and HomeValueIndex try to get back all of the data

that is stored in orig_data…

Views

▪ Views are stored SELECT statements that act like tables.

▪ Queries are performed on the underlying tables so views update as the

underlying data is updated.

▪ Let’s put together a New England view (ne_view) that mimics the ne_data

table.

CREATE [TEMPORARY] VIEW view_name (col1,col2,...) AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

The optional TEMPORARY keyword makes

the view last for the duration of the query.

Indexing

▪ HomeValueIndex has 6,133,491 rows. Queries take a few seconds to

execute.
▪ A basic query will likely involve using the views that perform many joins, so a lot of data

matching is going on.

▪ A SQL index is a high-speed lookup that’s added to a column or columns

of a table to improve query speeds.

▪ Indexes are automatically updated when data is added, changed, or

deleted from columns involved in the index.

CREATE INDEX index_name ON table_name

(col1, col2, …) ;

Speed Test

▪ Run the SELECT, then add an index, then re-run.

SELECT HomeValueIndex.State as StateID, States.State

FROM HomeValueIndex

JOIN States ON HomeValueIndex.State=States.rowid ;

CREATE INDEX hvi_state_index ON

HomeValueIndex (State) ;

Add a multi-column index to HomeValueIndex

▪ First do a SELECT COUNT(*) from the ne_view view and check the time

for it to execute.

▪ To build the index let’s use the DB Browser GUI.

▪ Repeat the query on ne_view. Any difference in query time?

Indexing downsides

▪ Indexes take up storage space.

▪ They need to be updated when data is insert, updated, or deleted
▪ This can significantly slow down these operations.

▪ They should be used with some care.

▪ Some DBMS software (like SQL Server’s GUI system) can suggest query

optimizations which may involve adding indexes to tables.

Homework

▪ Let’s take a look at the Chinook database (chinook.db)

▪ This is a simulated online music store (like iTunes).

▪ Here’s the layout of the database…

▪ Your homework will involve writing several SQL queries to extract data

from the database.

Chinook table diagram

symbol indicates a

foreign key

