Introduction to C
Day 1

Katia Bulekova

Research Computing Services

Schedule

9:30-10:30

10:30 — 10:45 — coffee break
10:45 - 11:45

11:45 -12:00 — break

12:00 - 13:00

C History

Developed by Dennis Ritchie at Bell Labs in 1969-1973

Official ANSI standard published in 1969 (“C 89”)
THE and updated in 1999 (“C99”)

In 1985 Bjarne Stroustrup (Bell Labs) published C++
R & (“C with classes”)

EEEEEEEEEEEEEEEEEEEEEEEEEE

Where is C used

e Operating Systems (Linux, Apple’s OS X, Microsoft Windows)
e Databases (MySQL and others)

* Browsers (Google’s Chromium)

* Adobe applications

* Many other desktop applications

Useful resources

* Brian Kernighan and Dennis Ritchie, The C Programming Language

* The C Language Specification:
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf

* Learn C in minutes:
https://learnxinyminutes.com/docs/c/

* Online Tutorial (guru99.com):
https://www.guru99.com/c-programming-language.htmi

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
https://learnxinyminutes.com/docs/c/
https://www.guru99.com/c-programming-language.html

Compiled vs. Interpreted Languages

Interpreted Languages: Matlab, Python, R, Stata, SAS, etc.

Advantages:
* Interactive
* Allows fast code development

Disadvantages:
* Uses more CPU and RAM
* Slower for a given task

Compiled vs. Interpreted Languages

Compiled Languages: C, C++, FORTRAN, etc.
Source code is written using a text editor;

Source code then must be processed through compiler.

Big picture

Object code
main.o
Object code
Linker
Object code
fun2.o

111

Compiler

C compiler for Windows and Mac

Windows:
Codeblocks: http://www.codeblocks.org/downloads

Mac:
https://developer.apple.com/downloads/

See https://www.guru99.com/c-gcc-install.html for directions

http://www.codeblocks.org/downloads
https://developer.apple.com/downloads/
https://www.guru99.com/c-gcc-install.html

Get bootcamp materials

Copy bc_dayl.zip file from RCS examples webpage

$ cp /project/scv/examples/c/bootcamp/bc _dayl.zip .

$ unzip bc _dayl.zip

Almost a C program: bc 00.c

*/

bc 00.c

Date:

May 2022

// This function has no input and returns no value

vold main ()

J

{

11

Almost a C program: bc 00.c

Multiline comments

* Date: May 2022

// This function has no input and returns no value
vold main () {

J

12

Almost a C program: bc 00.c

Single line comment

/%
* bg 00.c
*

* DRte
e

May 2022

// This function has no input and returns no value

vold main ()

J

{

13

Almost a C program: bc 00.c
Compiling and Running:

$ gcc bc 090.c
$./a.out

$

First C program: bc_ 01 hello.c

#include <stdio.h>

int main () {
printf ("Hello,
return 0O;

world\n") ;

15

First C program: bc_ 01 hello.c

Include macro (we will return to it later)

\

#include <stdio.h>

16

First C program: bc_ 01 hello.c

Declaration of function “main”, returning type “int”

Every C program contains at least one fuhction — main()

int main() {

17

First C program: bc_ 01 hello.c

Each statement must end with a semicolon

18

First C program: bc_ 01 hello.c

Function used for printing

printf ("Hello,

world\n") ;

19

First C program: bc_ 01 hello.c

Return the value 0

return O;

First C program: bc 01 hello.c
Compiling and Running:

$ gcc bc 91 hello.c -0 hello
$./hello

Hello, world
$

First C program: bc 01 hello.c

Hands-on exercises:

1. Delete one of the semicolons and try to compile the code. What
error messages do you get?

2. Add another printf() function. Check what output you get if you do
not use “\n” symbol at the end of the string.

First C program (a closer look): bc 01 hello.c

Where does printf() function come from?

#include <stdio.h>

int main () {
printf ("Hello,
return 0;

world\n") ;

23

First C program (a closer look): bc 01 hello.c

The preprocessor replaces the #include macro with the contents of
stdio.h file which contains the declaration of printf() function

#include <stdio.h>

int main () {
printf ("Hello, world\n");
return 0;

First C program (a closer look)

Preprocessor

Assembler

Expended Assembly : Executable

25

First C program (a closer look)

Preprocessor:

The source code is first passed to the preprocessor which
expands the code;

Compiler:
converts the code into assembly code;

Assembler:
assembly code is converted to the object code

First C program

Expand code using preprocessor

$ gcc -E bc 01 hello.c

The expanded code is almost a thousand lines long!

First C program

Assembly code:

$ gcc -S bc 01 hello.c
$ less bc 01 hello.s

Compile to generate an object code:

$ gcc -c bc 01 hello.c

First C program

Link object together with system libraries

$ gcc -o bc 01 hello bc 01 hello.o

Variables in C

All variables in C must be declared

#include <stdio.h>
int main () {
float tc = 100.0;
float tf;
tf = 9.0/5.0 * tc + 32.0;
printf ("$£f celcius = %$f fahrenheit\n", tc, tf);

Variables in C

All variables in C must be declared

Variable type Variable name Initial value

#inAlude <stdio.h>
int in ()

float tc = 100.0;

float tf;

tf = 9.0/5.0 * tc + 32.0;

printf ("%$£f celcius = %f fahrenheit\n", tc, tf);

Variables in C

1.Primitive data types
- int for integer

char for character

float for single precision floating numbers

double for double precision floating numbers
- void

2.Derived data types

3.User-defined data types

There is no “boolean” (or logical) data type in C

32

Variables in C

m

char 1 byte %d -128 to 127 or 0 to 255

unsigned char 1 byte %d 0to 255

signed char 1 byte %d -128 to 127

int 2 or 4 bytes %d -32,768 to0 32,767 or -2,147,483,648 to 2,147,483,647
unsigned int 2 or 4 bytes %Uu 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes %d -32,768 to 32,767

unsigned short 2 bytes %d 0 to 65,535

long 8 bytes %ld -9223372036854775808 to 9223372036854775807
unsigned long 8 bytes %lu 0 to 18446744073709551615

float 4 bytes %f or %g 1.2E-38 to 3.4E+38 (6 decimal places)

double 8 bytes %f or %g 2.3E-308 to 1.7E+308 (15 decimal places)

long double 10 bytes %lf 3.4E-4932 to 1.1E+4932 (19 decimal places)

Comments in C

/* classic C comments
can be use over multiple lines */

// C++ comments; only used for comments on a single line

#include <stdio.h>
int main () {

float tc = 100.0; /* temperature in celcius */

float tf;
tf = 9.0/5.0 * tc + 32.0;
printf ("$£f celcius = %$f fahrenheit\n",

tc,

tf);

34

C program: bc 02 vars.c

Hands-on exercises:

1. Copy bc 02 vars.c code to ex_02.c

2. Define integer variables yearl and year2 and assign them some
values. For example, a year when you graduated from school and
the current year. Calculate the difference and print it.

Reading in values: bc 03 read.c

#include <stdio.h>
int main() {
float tc;
float tf; Address of operator

printf("Pleags/{ﬁgzz‘temperature in celcius: ");

scanf ("3f", &tc);

tf = 9.0/5.0 * tc + 32.0;
printf ("$f celcius = %$f fahrenheit\n", tc, tf);

36

Reading in values
Hands-on exercises:
1. Copy bc 03 read.c to ex 03.c

2. Define integer variables yearl and year2 and read them using
scanf () function. Do not forget & symbol.

Arithmetic Operators
Coperator | Description | brample

+ addition y=x+5;
- subtraction y=X-3;

* multiplication y=x*25;
/ division y=x/2
% L(?\r/ri\j;nnder after integer i=i%2
++ increment by one j=i++

-- decrement by one j=i--

38

Arithmetic Operators

Hands-on exercises:

1. Use arithmetic operators to compute value k.
2. Print value of k.

Arrays

Array indices start at zero!!

0o | 2 | 3 | 4
21 18 29 7 5

< >

Size of array is 5

40

Arrays

Declare arrays using square brackets: []

Examples:
float x[3]; float x[] = {0.5, -0.3, 2.5}
x[@0] = ©0.5; or
x[1] = -0.3;
x[2] = 2.5;

Arrays

Hands-on exercises:

1. Declare an array with 3 elements
2. Define values for all 3 elements and print them.
3. Try to access x[3] element.

Arrays review: Out of bounds example

int main() {
int x[5] = {1, 2, 3, 4, 5};

x[10] = 11;
printf(" x[10] = %d\n", x[10]);

return 0;

43

Arrays review: Out of bounds example

Compile and run:

$ gcc -0 oob bc ©5 array.c

$./oob

Strings

A C string is an array of characters
The last element in the string array must be a NULL character — '\0'

Either way this string has length 5.
Note, that in the first example we use double quotes and in the second —single
guotes.

45

Strings

Hands-on exercises:

There are many string functions declared in string.h header file.
For example, there are functions

strcpy() - copy string

strcat() - append one string to another

See https://en.wikibooks.org/wiki/C Programming/string.h for a list of other string functions

https://en.wikibooks.org/wiki/C_Programming/string.h

Control Flow: 1f

-
1f (condition) { :
I // statements to be executed if condition i1s true I
|
|

47

Control Flow: 1f-else

if (condition) { |
. // statements to be executed if condition is true |
i} else { i
| // statements to be executed if condition is false i
| |

48

Control Flow: 1f-else

float x = 20.;

float vy;

1f (x >= 0){
y = sqrt(x);

} else {

y = sgrt(-x);

*Note: sqrt() function declaration is in <math.h> header file

Control Flow: 1f-else

Since we use a function sqrt() that comes from a math library,
We need to add a path to the system library where this function is
implemented. It will be used by the linker:

$ gcc -1m -0 bc 07 if bc 07 if.c

Control Flow: 1f-else

Hands-on exercises:

1. Add anelse clause tothe if() statement
2. For a negative value of x, compute sqrt(-x)
3. Inthe print statement add 1 letter to indicate imaginary number

Control Flow: for loop

for (init; condition, update) { :
// statements |
|
|

__

52

Control Flow: for loop

for (; ;){

printf ("This loop will run forever\n”);

}

53

Control Flow: for loop

condition
; | update

initialization

-

for (1 =0 ; 1 < 10 ; 14+){
printf ("i = %$d\n", 1i);
}

54

Side note

Operators ++ and - -
++ // 1ncrease value by 1
-- // decrease value by 1

int 1, 3J;

i =5;
7 = i++;
printf ("1i=%d

J = ++i;
printf ("1i=%d

j=%d\n",

55

Side note
Operators +=, -=, *=, /=
a += b 1s the same as a

a -= b 1s the same as a

a+b

56

Control Flow: for loop

int 1;
for (i = 0, dotprod=0. ; 1 < 3 ; 1i++) {
dotprod += x[i] * yI[i];

}

Compile:

$ gcc -1m -0 bc 08 for bc 08 for.c

Control Flow: for loop

Hands-on exercises:

Let’s modify the code and instead of calculating a dot product, we will
calculate a unit vector given input vector x:

1. Find length of a vector sqrt(x[1]% + x[2]% + x[3]?)
2. Ifthe length is greater than O, divide the input vector x by its length

	Introduction to C�Day 1
	Schedule
	C History
	Where is C used
	Useful resources
	Compiled vs. Interpreted Languages
	Compiled vs. Interpreted Languages
	Big picture
	C compiler for Windows and Mac
	Get bootcamp materials
	Almost a C program: bc_00.c
	Almost a C program: bc_00.c
	Almost a C program: bc_00.c
	Almost a C program: bc_00.c
	First C program: bc_01_hello.c
	First C program: bc_01_hello.c
	First C program: bc_01_hello.c
	First C program: bc_01_hello.c
	First C program: bc_01_hello.c
	First C program: bc_01_hello.c
	First C program: bc_01_hello.c
	First C program: bc_01_hello.c
	First C program (a closer look): bc_01_hello.c
	First C program (a closer look): bc_01_hello.c
	First C program (a closer look)
	First C program (a closer look)
	First C program
	First C program
	First C program
	Variables in C
	Variables in C
	Variables in C
	Variables in C
	Comments in C
	C program: bc_02_vars.c
	Reading in values: bc_03_read.c
	Reading in values
	Arithmetic Operators
	Arithmetic Operators
	Arrays
	Arrays
	Arrays
	Arrays review: Out of bounds example
	Arrays review: Out of bounds example
	Strings
	Strings
	Control Flow: if
	Control Flow: if-else
	Control Flow: if-else
	Control Flow: if-else
	Control Flow: if-else
	Control Flow: for loop
	Control Flow: for loop
	Control Flow: for loop
	Side note
	Side note
	Control Flow: for loop
	Control Flow: for loop

